DOI QR코드

DOI QR Code

Simulations of Summertime Surface Ozone Over the Korean Peninsula Under IPCC SRES A2 and B1 Scenarios

IPCC SRES A2와 B1 시나리오에 따른 한반도지역의 여름철 지표 오존의 수치모의

  • Hong, Sung-Chul (Climate Change Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Choi, Jin-Young (Climate Change Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Song, Chang-Keun (Climate Change Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Hong, You-Deog (Climate Change Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Lee, Suk-Jo (Climate Change Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Lee, Jae-Bum (Climate Change Research Division, Climate and Air Quality Research Department, National Institute of Environmental Research)
  • 홍성철 (국립환경과학원 기후변화연구과) ;
  • 최진영 (국립환경과학원 기후변화연구과) ;
  • 송창근 (국립환경과학원 기후변화연구과) ;
  • 홍유덕 (국립환경과학원 기후변화연구과) ;
  • 이석조 (국립환경과학원 기후변화연구과) ;
  • 이재범 (국립환경과학원 기후변화연구과)
  • Received : 2012.11.20
  • Accepted : 2013.04.02
  • Published : 2013.06.30

Abstract

The surface ozone concentrations changes were investigated in response to climate change over the Korean peninsula for summertime using the global-regional one way coupled Integrated Climate and Air quality Modeling System (ICAMS). The future simulations were conducted under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B1 scenarios. The modeling system was applied for four 10-year simulations: 1996~2005 as a present-day case, 2016~2025, 2046~2055, and 2091~2100 as future cases. The results in this study showed that the mean surface ozone concentrations increased up to 0.5~3.3 ppb under the A2, but decreased by 0.1~10.9 ppb under the B1 for the future, respectively. However, its increases were lower than an increase of the average daily maximum 8-hour (DM8H) surface ozone concentrations which was projected to increase by 2.8~6.5 ppb under the A2. The DM8H surface ozone concentrations seem to be therefore far more affected by the climate and emissions changes than mean values. The probability of exceeding 60 ppb was projected to increase by 6~19% under the A2. In the case of B1, its changes were presented with an increase of 2.9% in the 2020s but no occurrence in the 2100s due to the effect of the reduced emissions. Future projection on surface ozone concentrations was generally shown to have almost the similar trend as the emissions of $NO_x$ and NMVOC.

Keywords

References

  1. Akimoto, H. (2003) Global air quality and pollution, Science, 302, 1716-1719. https://doi.org/10.1126/science.1092666
  2. Bell, M.L., R. Goldberg, C. Hogrefe, P.L. Kinney, K. Knowlton, B. Lynn, J. Rosenthal, C. Rosenzweig, and J.A. Patz (2007) Climate change, ambient ozone, and health in 50 US cities, Climatic Change, 82, 61-76. https://doi.org/10.1007/s10584-006-9166-7
  3. Bey, I., D.J. Jacob, R.M. Yantosca, J.A. Logan, B.D. Field, A.M. Fiore, Q. Li, H.Y. Liu, L.J. Mickley, and M.G. Schultz (2001) Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23073-23095. https://doi.org/10.1029/2001JD000807
  4. Byun, D. and J.K.S. Ching (1999) Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, United States Environmental Protection Agency Rep., EPA-600/R-99/030, 727pp.
  5. Byun, D.W. and K.L. Schere (2006) Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51-77. https://doi.org/10.1115/1.2128636
  6. Choi, J.Y., S.Y., Kim, S.C., Hong, J.B., Lee, C.K., Song, H.J., Lee, and S.J., Lee (2012) Evaluation of temperature and precipitation on Inegrated Climate and Air Quality Modeling System (ICAMS) for air quality prediction, Journal of Korean Society for Atmospheric Environment, 28(6), 615-631. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2012.28.6.615
  7. Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, R. Laprise, V. Magata Rueda, L. Mearns, C.G. Menundez, J. Rvisvnen, A. Rinke, A. Sarr, and P. Whetton (2007) Regional Climate Projections, in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Edited by Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, Cambridge University Press, Cambridge, UK and New York, NY, U.S.A., 847-940.
  8. Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy, and X. Zhang (2007) Couplings Between Changes in the Climate System and Biogeochemistry, in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Edited by Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, Cambridge University Press, Cambridge, UK and New York, NY, U.S.A., 499-587.
  9. Fuhrer, J. and F. Booker (2003) Ecological issues related to ozone: agricultural issues, Environ. Inter., 29, 141-154. https://doi.org/10.1016/S0160-4120(02)00157-5
  10. Gery, M.W., G.Z. Whitten, J.P. Killus, and M.C. Dodge (1989) A photochemical kinetic mechanism for urban and regional scale computer modeling, J. Geophys. Res., 94, 12925-12956. https://doi.org/10.1029/JD094iD10p12925
  11. Grell, G.A., J. Dudhia, and D.R. Stauffer (1995) A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR Technical Note. NCAR/TN-398+STR, National center for atmospheric research, 122pp.
  12. Hogrefe, C., B. Lynn, K. Civerolo, J.-Y. Ku, J. Rosenthal, C. Rosenzweig, R. Goldberg, S. Gaffin, K. Knowlton, and P.L. Kinney (2004) Simulating changes in regio-nal air pollution over the eastern United States due to changes in global and regional climate and emissions, J. Geophys. Res., 109, D22301. https://doi.org/10.1029/2004JD004690
  13. Hong, S.C., J.B. Lee, J.Y. Choi, K.J. Moon, H.J. Lee, Y.D. Hong, S.J. Lee and C.K. Song (2012) The effect of the chemical lateral boundary conditions on CMAQ simulations of tropospheric ozone for East Asia, Journal of Korean Society for Atmospheric Environment, 28(5), 581-594. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2012.28.5.581
  14. In, H.-J., D.W. Byun, R.J. Park, N.-K. Moon, S. Kim, and S. Zhong (2007) Impact of trans-boundary transport of carbonaceous aerosols on the regional air quality in the Unite States: A case study of the South American wildland fire of May 1998, J. Geophys. Res., 112, D07201, doi:10.1029/2006JD007544.
  15. IPCC (Intergovernmental Panel on Climate Change) (2000) Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK, 570pp.
  16. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate Change 2007: The Physical Science Basis, Cambridge University Press, Cambridge, UK and New York, NY, U.S.A., 996pp.
  17. Jacob, D.J. and D.A. Winner (2009) Effect of climate change on air quality, Atmos. Environ., 43, 51-63. https://doi.org/10.1016/j.atmosenv.2008.09.051
  18. Lin, C.-Y.C., D.J. Jacob, and A.M. Fiore (2001) Trends in exceedances of the ozone air quality standard in the continental United States, 1980-1998, Atmos. Environ. 35, 3217-3228. https://doi.org/10.1016/S1352-2310(01)00152-2
  19. Lin, J.T., K.O. Patten, K. Hayhoe, X.Z. Liang, and D.J. Wuebbles (2007) Effects of future climate and biogenic emissions changes on surface ozone over the United States and China, J. Appl. Meteor. Climatol., 47, 1888-1909.
  20. Mayeres I. and D. Van Regemorter (2008) Modelling the health related benefits of environmental policies and their feedback effects: A CGE analysis for the EU countries with GEM-E3, Energy J. 29, 135-150.
  21. Meleux, F., F. Solmon, and F. Giorgi (2007) Increase in European summer ozone amounts due to climate change, Atmos. Environ., 41, 7577-7587. https://doi.org/10.1016/j.atmosenv.2007.05.048
  22. Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980-2020, Atmos. Chem. Phys., 7, 4419-4444. https://doi.org/10.5194/acp-7-4419-2007
  23. Olivier, J.G.J., J.J.M. Berdowski, J.A.H.W. Peters, J. Bakker, A.J.H. Visschedijk, and J.P.J. Bloos (2001) Applications of EDGAR. Including a description of EDGAR 3.0: reference database with trend data for 1970-1995, RIVM, Bilthoven. RIVM report no. 773301001/NOP report no. 410200 051.
  24. Streets, D.G., T.C. Bond, G.R. Carmichael, S.D. Fernans, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.-H. Woo, and K.F. Yarber (2003), An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093.
  25. Song, C.K., D.W. Byun, R.B. Pierce, J.A. Alsaadi, T.K. Schaack, and F. Vukovich (2008) Downscale linkage of global model output for regional chemical transport modeling: Method and general performance, J. Geophys. Res., 113, D08308, doi:10.1029/2007JD008951.
  26. Tao, Z., A. Williams, H.-C. Huang, M. Caughey, and X.-Z. Liang (2007) Sensitivity of U.S. surface ozone to future emissions and climate changes, Geophys. Res. Lett., 34, L08811. https://doi.org/10.1029/2007GL029455
  27. West, J.J., S. Szopa, and D.A. Hauglustaine (2007) Human mortality effects of future concentrations of tropospheric ozone, C. R. Geosci. 339, 775-783. https://doi.org/10.1016/j.crte.2007.08.005
  28. Wu, S., L.J. Mickley, E.M. Leibensperger, D.J. Jacob, D., Rind, D.G. Streets (2008) Effects of 2000-2050 global change on ozone air quality in the United States, J. Geophys. Res., 113, D06302, doi:10.1029/2007JD008917.
  29. Zhang, Q., D.G. Streets, K. He, Y.X. Wang, A. Richter, J.P. Burrows, I. Uno, C.J. Jang, D. Chen, Z. Yao, and Y. Lei (2007) $NO_x$ emission trends for China, 1995-2004: Th eview from the ground and the view from space, J. Geophys. Res., 112, D22306, doi:10.1029/2007JD008684.