DOI QR코드

DOI QR Code

카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구

Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation

  • 이민제 (고려대학교 통계학과) ;
  • 최태련 (고려대학교 통계학과) ;
  • 김정선 (국립암센터 분자역학연구과) ;
  • 우해동 (국립암센터 분자역학연구과)
  • Lee, Minjea (Department of Statistics, Korea University) ;
  • Choi, Taeryon (Department of Statistics, Korea University) ;
  • Kim, Jeongseon (Molecular Epidemiology Branch, National Cancer Center) ;
  • Woo, Hae Dong (Molecular Epidemiology Branch, National Cancer Center)
  • 투고 : 2013.03.29
  • 심사 : 2013.05.21
  • 발행 : 2013.06.30

초록

본 논문에서는 카드뮴의 반응-용량 모형에 대한 베이지안 분석을 실시하고 기준용량에 대한 추정값들을 유도하고 비교한다. 이를 위하여 독성물질에 대한 용량반응곡선에서 많이 활용되는 두 가지 모형을 사용하고, 카드뮴의 독성연구에 관련한 기존의 문헌으로 수집된 자료에 대한 성별, 연령, 인종, study code 등과 같은 소집단 간의 개별적 형질을 반영할 수 있는 베이지안 메타분석 관점에서의 모형분석을 실시한다. 이러한 두 가지 모형에 대한 베이지안 분석을 위하여 WinBUGS를 이용한 마르코프 연쇄 몬테칼로(Markov chain Monte Carlo; MCMC) 방법을 통하여 모수를 추정하고 이에 따른 다양한 기준용량들을 계산하고 비교해보았다. 베이지안 모형 적합뿐만 아니라 편차정보기준을 통해서 주어진 자료를 더 잘 설명하는 모형을 선택하는 베이지안 모형 선택을 고려하였고, 이를 실제 자료에 적용해본다.

In this paper, we consider a Bayesian analysis of the dose-effect relationship of cadmium to evaluate a benchmark dose(BMD). For this purpose, two dose-response curves commonly used in the toxicity study are fitted based on Bayesian methods to the data collected from the scientific literature on cadmium toxicity. Specifically, Bayesian meta-analysis and hierarchical modeling build an overall dose-effect relationship that use a piecewise linear model and Hill model, where the inter-study heterogeneity and inter-individual variability of dose and effect such as gender, age and ethnicity are accounted. Estimation of the unknown parameters is made by using a Markov chain Monte Carlo algorithm based user-friendly software WinBUGS. Benchmark dose estimates are evaluated for various cut-offs and compared with different tested subpopulations with with gender, age and ethnicity based on these two Bayesian hierarchical models.

키워드

참고문헌

  1. Choi (2010). Estimating a benchmark dose in dose response studies via Bayesian hierarchical methods, Journal of The Korean Data Analysis Society, 12, 119-133.
  2. Choi, T., Schervish, M. J., Schmitt, A. K. and Small, M. J. (2010). Bayesian analysis for fitting multiple health endpoints in a toxicity study, Journal of Agricultural, Biological and Environmental Statistics, 15, 290-307 . https://doi.org/10.1007/s13253-010-0019-5
  3. Crump, K. (2002). Critical issues in benchmark calculations from continuous data, Critical Reviews in Toxicology, 32, 133-153. https://doi.org/10.1080/20024091064200
  4. EFSA (2009). Meta-analysis of Dose-Effect Relationship of Cadmium for Benchmark, EFSA Scientific Report, 254, 1-62.
  5. Gamo, M., Ono, K. and Nakanishi, J. (2006). Meta-analysis for deriving age-and gender-specific dose-response relationships between urinary cadmium concentration and fbetagfsub2g-microglobulinuria under environmental exposure, Environmental Research, 42, 45-62.
  6. Iwata, K., Saito, H., Moriyama, M. and Nakano, A. (1993). Renal tubular function after reduction of environmental cadmium exposure: A ten-year follow-up, Archives of Environmental Health: An International Journal, 48, 157-163. https://doi.org/10.1080/00039896.1993.9940814
  7. Jakubowski, M., Trojanowska, B., Kowalska, G., Gendek, E., Starzynski, Z., Krajewska, B. and Jajte, J. (1987). Occupational exposure to cadmium and kidney dysfunction, Int Arch Occup Environ Health, 59, 567-577. https://doi.org/10.1007/BF00377920
  8. JECFA (2011). World Health Organization (WHO). Cadmium. In: Safety Evaluation of Certain Food Additives and Contaminant, Prepared by the Seventy-third Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO food additives series, Geneva, 2011.
  9. Jo, Y., Lim, Y., Kim, H. and Lee, J. (2012). Bayesian analysis for heat effects on mortality, Communications of the Korean Statistical Society, 19, 705-720. https://doi.org/10.5351/CKSS.2012.19.5.705
  10. Kulinskaya, E., Morgenthaler, S. and Staudte, R. G. (2008). Meta Analysis, John Wiley & Sons Ltd., New York.
  11. Lee, H., Yoon, E., Yum, Y. N., Hwang, M. S., Yang, K. and Shin, H. S. (2002). Estimating permissible intake level for endosulfan using Benchmark dose based on reproductive toxicity, Journal of Toxicology and Public Health, 18, 65-71.
  12. Lee, J., Choi, T. and Woo, Y. (2011). Bayesian approaches to zero inflated Poisson model, The Korean Journal of Applied Statistics, 24, 677-693. https://doi.org/10.5351/KJAS.2011.24.4.677
  13. National Cancer Center (2012). Evaluation report for the integration of heavy metals by oral ingestion: Cadmium, National Cancer Center, Seoul, Korea.
  14. Noh, J. (2008). A review of the meta-analysis in library and information Science, Journal of the Korean Society for Library and Information Science, 42, 45-62. https://doi.org/10.4275/KSLIS.2008.42.1.045
  15. Ntzoufras (2009). Bayesian Modeling Using WinBUGS, John Wiley & Sons Ltd., New York.
  16. Oh, Y., Choi, T. and Cho, M. (2012). Empirical study on Bayesian model selection of stochastic volatility models using deviance information criterion, Journal of The Korean Data Analysis Society, 14, 1871-1888.
  17. Omarova, A. and Phillips, C. J. C. (2007). A meta-analysis of literature data relating to the relationships between cadmium intake and toxicity indicators in humans, Environmental Research, 103, 432-440. https://doi.org/10.1016/j.envres.2006.09.006
  18. Parmigiani, G. (2002). Modeling in Medical Decision Making, John Wiley & Sons Ltd., New York.
  19. Sand, S., Victorin, K. and Filipsson, A. F. (2008). The current state of knowledge on the use of the benchmark dose concept in risk assessment, Journal of Applied Toxicology, 28, 405-421. https://doi.org/10.1002/jat.1298
  20. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 583-639. https://doi.org/10.1111/1467-9868.00353
  21. Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2004). Bayesian Approaches to Clinical Trials and Health-Care Evaluation, John Wiley & Sons Ltd., New York.
  22. Spiegelhalter, D. J., Thomas, A., Best, N. G. and Lunn, K. (2003). WinBUGS User Manual, MRC Biostatistics Unit, Imperial College School of Medicine, UK.
  23. Suwazono, Y., Sand, S., Vahter, M., Filipsson, A. F., Skerfving, S., Lidfeldt, J. and Akesson, A. (2006). Benchmark dose for cadmium-induced renal effects in humans, Environmental Health Perspectives, 114, 1072. https://doi.org/10.1289/ehp.9028
  24. US. EPA (2002). Perchlorate Environmental Contamination : Toxicological Review and Risk Characterization, 2002 External Review, U.S. Environmental Protection Agency, Office of Research and Development, National Center for Envionmental Assessment, Washington Office, Washington, DC. NCEA-1-0503, 2002.