DOI QR코드

DOI QR Code

2차원 홀로그래픽 변조부호 설계를 위한 정수계획법 모형

Integer Programming Models for the Design of Two-Dimensional Holographic Storage Modulation Code

  • 박태형 (숭실대학교 산업정보시스템공학과) ;
  • 이재진 (숭실대학교 정보통신전자공학부 정보저장및통신 연구실)
  • 투고 : 2013.04.25
  • 심사 : 2013.05.19
  • 발행 : 2013.06.30

초록

본 연구에서는 이차원 인접 심볼간 간섭(2D ISI) 및 인접 페이지간 간섭 (IPI)을 줄이는 홀로그래픽 저장장치를 위한 이차원 변조부호를 선택하는 문제를 고려한다. 변조부호 선택문제는 목적함수로 코드내부와 코드 상호간 인접심볼값의 차이를 최소화하고, 제약식으로는 사용된 심볼의 분포가 균등하며, 최소 해밍거리 조건이 주어진 이차정수계획법 모형으로 수식화되었다. 선택된 코드워드에서 고립된 픽셀의 발생여부를 검색하는 모형은 정수계획법 모형으로 수식화되었다. 제안된 모형들은 4-레벨 6/8 코드 및 2-레벨 6/8 코드에 적용되어 성능을 계산하였다.

In this paper, we introduce a modulation code design problem where best selection of two-dimensional codewords are determined to reduce two-dimensional (2D) intersymbol interference (ISI) and interpage interference (IPI). Codeword selection problem is formulated as a quadratic integer programming model that minimizes intra- and inter-symbol differences subject to uniform symbol usage and minimal Hamming distance violations. Second integer programming model detects the occurrence of isolated pixel pattern in the selected codewords. The proposed models are applied to 4-level and 2-level 6/8 codes.

키워드

참고문헌

  1. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," in Proc. IEEE, vol. 92, no. 8, pp. 1231-1280, July 2004. https://doi.org/10.1109/JPROC.2004.831212
  2. V. Vadde and B. V. K. V. Kumar, "Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage," Appl. Opt., vol. 38, no. 20, pp. 4374-4386, July 1999. https://doi.org/10.1364/AO.38.004374
  3. J. Kim, J.-K. Wee and J. Lee, "Error correcting 4/6 modulation codes for holographic data storage," Japanese J. Appl. Phys., vol. 49, Article no. 08KB04, Aug. 2010.
  4. J. Kim and J. Lee, "Error-correcting 6/8 modulation code for reducing two-dimensional intersymbol interference," Japanese J. Appl. Phys., vol. 50, no. 9, pp. 09MB06, Sep. 2011. https://doi.org/10.1143/JJAP.50.09MB06
  5. J. Kim and J. Lee, "Two-dimensional non-ioslated pixel modulation code for holographic data storage," J. KICS, vol. 34, no. 2, pp. 163-168, Feb. 2009.
  6. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., 1979.
  7. H. D. Sherali and J. C. Smith, "A polyhedral study of the generalized vertex packing problem," Math. Programming, vol. 107, no. 3, pp. 367-390, July 2006. https://doi.org/10.1007/s10107-004-0504-0
  8. E. M. Macambira and C. C. de Souza, "The edge-weighted clique problem: valid inequalities, facets and polyhedral computations," European J. Operational Research, vol. 123, no. 2, pp. 346-371, June 2000. https://doi.org/10.1016/S0377-2217(99)00262-3
  9. P. Bonami and J. Lee, BONMIN 1.1 Users' Manual, Retrieved Dec., 21, 2009, from http://projects.coin-or.org/Bonmin.
  10. R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Scientific Press, 1993.
  11. IBM, IBM ILOG CPLEX V12.1: User's Manual for CPLEX, Retrieved Dec., 19, 2009, from ftp://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf.