Machanism of Cisplatin-induced Apoptosis and Bojungbangam-tang-mediated Anti-apoptotic Effect on Cell Proliferation in Rat Mesangial Cells

Cisplatin과 보정방암탕에 의한 백서 사구체 혈관사이세포의 세포사멸 기전 연구

  • Ju, Sung Min (Department of Pathology, College of Korean Medicine, Wonkwang University) ;
  • Kim, Sung Hoon (Cancer Preventive Material Development Research Center, College of Korean Medicine, Kyunghee University) ;
  • Kim, Yeong Mok (Department of Pathology, College of Korean Medicine, Wonkwang University) ;
  • Jeon, Byung Hun (Department of Pathology, College of Korean Medicine, Wonkwang University) ;
  • Kim, Won Sin (Department of Biological Science, College of Natural Sciences, Wonkwang University)
  • 주성민 (원광대학교 한의과대학 병리학교실) ;
  • 김성훈 (경희대학교 한의과대학 암예방소재개발연구센터) ;
  • 김영목 (원광대학교 한의과대학 병리학교실) ;
  • 전병훈 (원광대학교 한의과대학 병리학교실) ;
  • 김원신 (원광대학교 자연과학대학 생명과학부)
  • Received : 2013.02.13
  • Accepted : 2013.02.18
  • Published : 2013.02.25

Abstract

Cisplatin is a anti-neoplastic agent which is commonly used for the treatment of solid tumor. Cisplatin activates multiple signal transduction pathways involved in the stress-induced apoptosis in a variety of cell types. Previous study reported that cisplatin induces apoptosis through activation of ERK, p38 and JNK in rat mesangial cells, but apoptotic pathway remain known. The present study investigated the apoptotic pathway for cisplatin-indcued apoptosis in rat mesangial cells. cisplatin-induced apoptosis was associated with activation of caspase-3, caspase-8, caspase-9. Caspase-8 inhibition prevented the activation of both caspase-3 and caspase-9. In addition, cisplatin-induced apoptosis increased the expression of Bax, but not the level of Bcl-2. These change of Bax/bcl-2 ratio caused the release of cytochrome c from mitochondria into cytosol. In previous study, the ethanol extract of Bojungbangam-tang (EBJT) inhibited cisplatin-induced apoptosis in rat mesangial cells through inhibition of ERK and JNK activation. However, EBJT did not increase cell proliferation, because it did not prevent cisplatin-induced G2/M phase arrest. These effect of EBJT may be related to p38 activation. Cisplatin-induced G2/M phase arrest are inhibited by treatment with p38 inhibitor and EBJT in rat mesangial cells. Also, p38 inhibition and EBJT treatment on cisplatin-induced G2/M phase arrest are markedly increased the G0/G1 phase and reduced the sub-G1. In conclusion, anti-apoptotic effet of EBJT did not increases cell proliferation, because EBJT did not reduce p38 activation related to cisplatin-induced G2/M phase arrest.

Keywords

References

  1. Timmer-Bosscha, H., Mulder, N.H., de Vries, E.G. Modulation of cis-diamminedichloroplatinum(II) resistance: a review. Br. J. Cancer 66: 227-238, 1992. https://doi.org/10.1038/bjc.1992.249
  2. Goldstein, R.S., Mayor, G.H. Minireview. The nephrotoxicity of cisplatin. Life Sci. 32: 685-690, 1983. https://doi.org/10.1016/0024-3205(83)90299-0
  3. Safirstein, R., Winston, J., Goldstein, M., Moel, D., Dikman, S., Guttenplan, J. Cisplatin nephrotoxicity. Am. J. Kidney Dis. 8: 356-367, 1986. https://doi.org/10.1016/S0272-6386(86)80111-1
  4. Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. Ther. 34: 155-166, 1987. https://doi.org/10.1016/0163-7258(87)90009-X
  5. Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265-7279, 2003. https://doi.org/10.1038/sj.onc.1206933
  6. Kim, N.S., Ju, S.M., Kwon, Y.D., Shin, B.C., Ahn, K.S., Kim, S.H., Song, Y.S., Jeon, B.H. Anti-apoptotic Effect of Bojungbangam-tang Ethanol Extract on Cisplatin-Induced Apoptosis in Rat Mesangial Cells. Korean J. Oriental Physiology & Pathology 20: 1664-1671, 2006.
  7. Céraline, J., Deplanque, G., Duclos, B., Limacher, J.M., Hajri, A., Noel, F., Orvain, C., Frébourg, T., Klein-Soyer, C., Bergerat, J.P. Inactivation of p53 in normal human cells increases G2/M arrest and sensitivity to DNA-damaging agents. Int. J. Cancer. 75: 432-438, 1998. https://doi.org/10.1002/(SICI)1097-0215(19980130)75:3<432::AID-IJC17>3.0.CO;2-A
  8. Zhou, H., Kato, A., Yasuda, H., Miyaji, T., Fujigaki, Y., Yamamoto, T., Yonemura, K., Hishida, A. The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol. Appl. Pharmacol. 200: 111-120, 2004. https://doi.org/10.1016/j.taap.2004.04.003
  9. Guadagno, T.M., Ferrell, J.E. Jr. Requirement for MAPK activation for normal mitotic progression in Xenopus egg extracts. Science 282: 1312-1315, 1998. https://doi.org/10.1126/science.282.5392.1312
  10. Wright, J.H., Munar, E., Jameson, D.R., Andreassen, P.R., Margolis, R.L., Seger, R., Krebs, E.G. Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA. 96: 11335-11340, 1999. https://doi.org/10.1073/pnas.96.20.11335
  11. Bulavin, D.V., Higashimoto, Y., Popoff, I.J., Gaarde, W.A., Basrur, V., Potapova, O., Appella, E., Fornace, A.J. Jr. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411: 102-107, 2001. https://doi.org/10.1038/35075107
  12. Wang, X., McGowan, C.H., Zhao, M., He, L., Downey, J.S., Fearns, C., Wang, Y., Huang, S., Han, J. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol. Cell Biol. 20: 4543-4552, 2000. https://doi.org/10.1128/MCB.20.13.4543-4552.2000
  13. Pae, H.O., Oh, H., Yun, Y.G., Oh, G.S., Jang, S.I., Hwang, K.M., Kwon, T.O., Lee, H.S., Chung, H.T. Imperatorin, a furanocoumarin from Angelica dahurica (Umbelliferae), induces cytochrome c-dependent apoptosis in human promyelocytic leukaemia, HL-60 Cells. Pharmacol. Toxicol. 91: 40-48, 2002. https://doi.org/10.1034/j.1600-0773.2002.910107.x
  14. Kroemer, G., Zamzami, N., Susin, S.A. Mitochondrial control of apoptosis. Immunol. Today 18: 44-51, 1997. https://doi.org/10.1016/S0167-5699(97)80014-X
  15. Mignotte, B., Vayssiere, J.L. Mitochondria and apoptosis. Eur. J. Biochem. 252: 1-15, 1998. https://doi.org/10.1046/j.1432-1327.1998.2520001.x
  16. Zou, H., Li, Y., Liu, X., Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274: 11549-11558, 1999. https://doi.org/10.1074/jbc.274.17.11549
  17. Kaufmann, S.H., Hengartner, M.O. Programmed cell death: alive and well in the new millennium. Trends Cell. Biol. 11: 526-534, 2001. https://doi.org/10.1016/S0962-8924(01)02173-0
  18. Hengartner, M.O. The biochemistry of apoptosis. Nature 407: 770-776, 2000. https://doi.org/10.1038/35037710
  19. Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803-815, 1996. https://doi.org/10.1016/S0092-8674(00)81265-9
  20. Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., Peter, M.E. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14: 5579-5588, 1995.
  21. Chandra, D., Liu, J.W., Tang, D.G. Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J, Biol. Chem. 277: 50842-50854, 2002. https://doi.org/10.1074/jbc.M207622200
  22. Green, D.R., Reed, J.C. Mitochondria and apoptosis. Science 281: 1309-1312, 1998. https://doi.org/10.1126/science.281.5381.1309
  23. Zou, H., Henzel, W.J., Liu, X., Lutschg, A., Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405-413, 1997. https://doi.org/10.1016/S0092-8674(00)80501-2
  24. Hsu, Y.T., Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273: 10777-10783, 1998. https://doi.org/10.1074/jbc.273.17.10777
  25. Murphy, K,M., Streips, U.N., Lock, R.B. Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene 18: 5991-5999, 1999. https://doi.org/10.1038/sj.onc.1203001
  26. Gross, A., McDonnell, J.M., Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13: 1899-1911, 1999. https://doi.org/10.1101/gad.13.15.1899
  27. Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W., Farber, J.L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273: 7770-7775, 1998. https://doi.org/10.1074/jbc.273.13.7770
  28. Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., Mac Gregor, G.R., Thompson, C.B., Korsmeyer, S.J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727-730, 2001. https://doi.org/10.1126/science.1059108
  29. Finucane, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, T.G., Green, D.R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225-2233, 1999. https://doi.org/10.1074/jbc.274.4.2225
  30. Johnson, B.W., Cepero, E., Boise, L.H. Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha. J. Biol. Chem. 275: 31546-31553, 2000. https://doi.org/10.1074/jbc.M001363200
  31. Kluck, R.M., Bossy-Wetzel, E., Green, D.R., Newmeyer, D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1081-1082, 1997. https://doi.org/10.1126/science.275.5303.1081
  32. Kim, H.J., Mun, J.Y., Chun, Y.J., Choi, K.H., Kim, M.Y. Bax-dependent apoptosis induced by ceramide in HL-60 cells. FEBS Lett. 505: 264-268, 2001. https://doi.org/10.1016/S0014-5793(01)02836-8