References
- Timmer-Bosscha, H., Mulder, N.H., de Vries, E.G. Modulation of cis-diamminedichloroplatinum(II) resistance: a review. Br. J. Cancer 66: 227-238, 1992. https://doi.org/10.1038/bjc.1992.249
- Goldstein, R.S., Mayor, G.H. Minireview. The nephrotoxicity of cisplatin. Life Sci. 32: 685-690, 1983. https://doi.org/10.1016/0024-3205(83)90299-0
- Safirstein, R., Winston, J., Goldstein, M., Moel, D., Dikman, S., Guttenplan, J. Cisplatin nephrotoxicity. Am. J. Kidney Dis. 8: 356-367, 1986. https://doi.org/10.1016/S0272-6386(86)80111-1
- Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. Ther. 34: 155-166, 1987. https://doi.org/10.1016/0163-7258(87)90009-X
- Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265-7279, 2003. https://doi.org/10.1038/sj.onc.1206933
- Kim, N.S., Ju, S.M., Kwon, Y.D., Shin, B.C., Ahn, K.S., Kim, S.H., Song, Y.S., Jeon, B.H. Anti-apoptotic Effect of Bojungbangam-tang Ethanol Extract on Cisplatin-Induced Apoptosis in Rat Mesangial Cells. Korean J. Oriental Physiology & Pathology 20: 1664-1671, 2006.
- Céraline, J., Deplanque, G., Duclos, B., Limacher, J.M., Hajri, A., Noel, F., Orvain, C., Frébourg, T., Klein-Soyer, C., Bergerat, J.P. Inactivation of p53 in normal human cells increases G2/M arrest and sensitivity to DNA-damaging agents. Int. J. Cancer. 75: 432-438, 1998. https://doi.org/10.1002/(SICI)1097-0215(19980130)75:3<432::AID-IJC17>3.0.CO;2-A
- Zhou, H., Kato, A., Yasuda, H., Miyaji, T., Fujigaki, Y., Yamamoto, T., Yonemura, K., Hishida, A. The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol. Appl. Pharmacol. 200: 111-120, 2004. https://doi.org/10.1016/j.taap.2004.04.003
- Guadagno, T.M., Ferrell, J.E. Jr. Requirement for MAPK activation for normal mitotic progression in Xenopus egg extracts. Science 282: 1312-1315, 1998. https://doi.org/10.1126/science.282.5392.1312
- Wright, J.H., Munar, E., Jameson, D.R., Andreassen, P.R., Margolis, R.L., Seger, R., Krebs, E.G. Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA. 96: 11335-11340, 1999. https://doi.org/10.1073/pnas.96.20.11335
- Bulavin, D.V., Higashimoto, Y., Popoff, I.J., Gaarde, W.A., Basrur, V., Potapova, O., Appella, E., Fornace, A.J. Jr. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411: 102-107, 2001. https://doi.org/10.1038/35075107
- Wang, X., McGowan, C.H., Zhao, M., He, L., Downey, J.S., Fearns, C., Wang, Y., Huang, S., Han, J. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol. Cell Biol. 20: 4543-4552, 2000. https://doi.org/10.1128/MCB.20.13.4543-4552.2000
- Pae, H.O., Oh, H., Yun, Y.G., Oh, G.S., Jang, S.I., Hwang, K.M., Kwon, T.O., Lee, H.S., Chung, H.T. Imperatorin, a furanocoumarin from Angelica dahurica (Umbelliferae), induces cytochrome c-dependent apoptosis in human promyelocytic leukaemia, HL-60 Cells. Pharmacol. Toxicol. 91: 40-48, 2002. https://doi.org/10.1034/j.1600-0773.2002.910107.x
- Kroemer, G., Zamzami, N., Susin, S.A. Mitochondrial control of apoptosis. Immunol. Today 18: 44-51, 1997. https://doi.org/10.1016/S0167-5699(97)80014-X
- Mignotte, B., Vayssiere, J.L. Mitochondria and apoptosis. Eur. J. Biochem. 252: 1-15, 1998. https://doi.org/10.1046/j.1432-1327.1998.2520001.x
- Zou, H., Li, Y., Liu, X., Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274: 11549-11558, 1999. https://doi.org/10.1074/jbc.274.17.11549
- Kaufmann, S.H., Hengartner, M.O. Programmed cell death: alive and well in the new millennium. Trends Cell. Biol. 11: 526-534, 2001. https://doi.org/10.1016/S0962-8924(01)02173-0
- Hengartner, M.O. The biochemistry of apoptosis. Nature 407: 770-776, 2000. https://doi.org/10.1038/35037710
- Boldin, M.P., Goncharov, T.M., Goltsev, Y.V., Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803-815, 1996. https://doi.org/10.1016/S0092-8674(00)81265-9
- Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., Peter, M.E. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14: 5579-5588, 1995.
- Chandra, D., Liu, J.W., Tang, D.G. Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J, Biol. Chem. 277: 50842-50854, 2002. https://doi.org/10.1074/jbc.M207622200
- Green, D.R., Reed, J.C. Mitochondria and apoptosis. Science 281: 1309-1312, 1998. https://doi.org/10.1126/science.281.5381.1309
- Zou, H., Henzel, W.J., Liu, X., Lutschg, A., Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405-413, 1997. https://doi.org/10.1016/S0092-8674(00)80501-2
- Hsu, Y.T., Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273: 10777-10783, 1998. https://doi.org/10.1074/jbc.273.17.10777
- Murphy, K,M., Streips, U.N., Lock, R.B. Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene 18: 5991-5999, 1999. https://doi.org/10.1038/sj.onc.1203001
- Gross, A., McDonnell, J.M., Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13: 1899-1911, 1999. https://doi.org/10.1101/gad.13.15.1899
- Pastorino, J.G., Chen, S.T., Tafani, M., Snyder, J.W., Farber, J.L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273: 7770-7775, 1998. https://doi.org/10.1074/jbc.273.13.7770
- Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., Mac Gregor, G.R., Thompson, C.B., Korsmeyer, S.J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727-730, 2001. https://doi.org/10.1126/science.1059108
- Finucane, D.M., Bossy-Wetzel, E., Waterhouse, N.J., Cotter, T.G., Green, D.R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274: 2225-2233, 1999. https://doi.org/10.1074/jbc.274.4.2225
- Johnson, B.W., Cepero, E., Boise, L.H. Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-alpha. J. Biol. Chem. 275: 31546-31553, 2000. https://doi.org/10.1074/jbc.M001363200
- Kluck, R.M., Bossy-Wetzel, E., Green, D.R., Newmeyer, D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275: 1081-1082, 1997. https://doi.org/10.1126/science.275.5303.1081
- Kim, H.J., Mun, J.Y., Chun, Y.J., Choi, K.H., Kim, M.Y. Bax-dependent apoptosis induced by ceramide in HL-60 cells. FEBS Lett. 505: 264-268, 2001. https://doi.org/10.1016/S0014-5793(01)02836-8