DOI QR코드

DOI QR Code

The Effects of Lycium chinese Mill., Morus alba L. and Their Combination on the Asthmatic Murine Model

천식동물모델을 이용한 지골피(地骨皮), 상백피(桑白皮) 및 두 배합약물의 실험적 연구

  • 서창우 (상지대학교 한의과대학) ;
  • 이영철 (상지대학교 한의과대학) ;
  • 이장천 (부산대학교 한의학전문대학원)
  • Received : 2013.06.02
  • Accepted : 2013.06.12
  • Published : 2013.06.30

Abstract

Objectives : To clarify the possible effect of Lycium chinese Mill (LC)., Morus alba L (MA)., and Lycium chinese Mill. +Morus alba L. (LC+MA), we have examined their influence on the development of pulmonary eosinophilic inflammation in the asthmatic murine model. Methods : Female Balb/c mice (5weeks) were immunized on two different days (21 days and 7 days before inhalational exposure) by intraperitonial injections of 0.2ml alum-precipitated Ag containing $100{\mu}g$ of OVA bound to 4 mg of aluminum hydroxide in PBS. Seven days after the second sensitization, mice were exposed to aerosolized ovalbumin for 30 minutes/day on 3 days/week for 8 weeks (at a flow rate of 250 L/min, 2.5% ovalbumin in normal saline) and, LC, MA, and LC+MA (500 mg/kg) were orally administered 3 times per a week for 8 weeks. Results : The suppressive effect of LC, MA, and LC+MA were demonstrated by the accumulation of eosinophills into airways, with the reduction of eosinophil, total lung leukocytes numbers. These were correlated with the marked reduction of IL-5, IL-13 and IL-4 levels in the BALF and serum. OVA-specific IgE levels were also decreased in serum and BAL from these mice. LC, MA, and LC+MA decreased eosinophil CCR3 expression and CD11b expression in lung cells. Conclusions : These results indicate that LC, MA, and LC+MA have high inhibitory effects on airway inflammation and hyper-responsiveness in the asthmatic murine model. The suppression of IL-5, IgE, eosinophil CCR3 expression and CD11b expression, and the increase of IFN-${\gamma}$ production in BALF seem to contribute to this effect. Hence, the results indicated that LC, MA, and LC+MA could act as a immuno-modulator which possesses anti-inflammatory and anti-asthmatic property by modulating the imbalance between Th1 and Th2 cytokines.

Keywords

References

  1. Djukanovic R, Roche WR, Wilson JW, Beasley CR, Twentyman OP, Howarth RH, Holgate ST. Mucosal inflammation in asthma. Am Rev Respir Dis. 1990;142:434-57. https://doi.org/10.1164/ajrccm/142.2.434
  2. Factor P. Gene Therapy for Asthma. Mol Ther. 2003;7:148-52. https://doi.org/10.1016/S1525-0016(03)00003-0
  3. 강구일 외 역. Basic clinical pharmacology. 서울:도서출판한우리. 1998:370-387.
  4. Gleich GJ. The eosinophil and bronchial asthma: current understanding. J Allergy Clin Immunol. 1990;85:422. https://doi.org/10.1016/0091-6749(90)90151-S
  5. 김광혁 외 역. Celluar and Molecular Immunology. 서울: 정문각. 1998:367.
  6. Hong CH, Hur SK, Oh O, Kim SS, Nam KA, Lee SK. Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J Ethnopharmacol. 2002;83:153-9. https://doi.org/10.1016/S0378-8741(02)00205-2
  7. Hsu H, Yang J, Ho Y, Lin C. Difference in the effects of radioprotection between aerial and root parts of Lycium chinense. J Ethnopharmacol. 1999;64:101-108. https://doi.org/10.1016/S0378-8741(98)00115-9
  8. Chai OH, Lee MS, Han E, Kim HT, Song CH. Inhibitory Effects of Morus alba on Compound 48/80-Induced Anaphylactic Reactions and Anti-Chicken Gamma Globulin IgE Mediated Mast Cell Activation. Biol Pharm Bull. 2005;28:1852-8. https://doi.org/10.1248/bpb.28.1852
  9. 임홍진, 김정근, 심은기, 홍철희, 황충현. 마우스 모델을 이용한 상백피 추출물의 알러지성 천식 억제 효과. 한국전통의학지. 2004;14:79-99.
  10. 정경욱, 남경수, 박종희, 門田 重利, 문전옥. 새로운 항산화제 검색법에 의한 SOD Mimic 천연약물의 개발-상백피의 항염증 효과. 생약학회지. 1998;29:1-7.
  11. 채옥희, 배형운, 이무삼, 이종인, 송창호. 상백피가 사람정장에 의한 흰쥐 복강비만세포의활성화에 미치는영향. 천식 및 알레르기학회지. 1999;19:666-76.
  12. 조형준, 이진용, 김덕곤. 桑白皮가 항알러지 및 항염증반응에 미치는 영향. 大韓韓方小兒科學會誌.. 2005;19:175-195.
  13. 김대겸, 이상재, 김광호. 桑白皮가 제 I형 알레르기 喘息모델 흰쥐의 BALF內 免疫細胞 및 血淸 IgE에 미치는 影響. 대한예방한의학회지. 2002;6:140-55.
  14. Schwartz DA, Thorne PS, Jagielo PJ, White GE, Bleur SA, Frees KL. Endotoxin responsiveness and grain dust-induced inflammation in the lower respiratory tract. Am J Physiol. 1994;267:609-17.
  15. Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA, Lenkiewicz E, Colbert D, Rinaldi L, Ackerman SJ, Irvin CG, Lee NA. Defining a Link with Asthma in Mice Congenitally Deficient in Eosinophils. Science. 2004;305:1773-6. https://doi.org/10.1126/science.1099472
  16. Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, Gerard C. A Critical Role for Eosinophils in Allergic Airways Remodeling. Science. 2004;305:1776-9. https://doi.org/10.1126/science.1100283
  17. Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA.Acidic Mammalian Chitinase in Asthmatic Th2 Inflammation and IL-13 Pathway Activation. Science. 2004;304:1678-82. https://doi.org/10.1126/science.1095336
  18. Boushey HA. New and Exploratory Therapies for Asthma. Chest. 2003;123:439-45. https://doi.org/10.1378/chest.123.3_suppl.439S-a
  19. Lukacs NW. Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol. 2001;1:108-16. https://doi.org/10.1038/35100503
  20. Otero DC, Anzelon AN, Rickert RC. CD19 Function in Early and Late B Cell Development: I. Maintenance of Follicular and Marginal Zone B Cells Requires CD19-Dependent Survival Signals. J Immunol. 2003;170:73-83. https://doi.org/10.4049/jimmunol.170.1.73
  21. Mukae H, Kadota J, Kohno S, Matsukura S, Hara K.Increase of activated T-cells in BAL fluid of Japanese patients with bronchiolitis obliterans organizing pneumonia and chronic eosinophilic pneumonia. Chest. 1995;108:123-8. https://doi.org/10.1378/chest.108.1.123
  22. Marzio R, Mauel J, Betz-Corradin S. CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol. 1999;21:565-82. https://doi.org/10.3109/08923979909007126
  23. Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of Disease Persistence and Progression. Annu Rev Immunol. 2004;22:789-91. https://doi.org/10.1146/annurev.immunol.22.012703.104716
  24. Marsland BJ, Le Gros G. CD8 $^+$ T cells and immunoregulatory networks in asthma. Springer Semin Immunopathol. 2004;25:311-23. https://doi.org/10.1007/s00281-003-0145-z
  25. Kemp RA, Ronchese F. Tumor-specific Tc1, but not Tc2, cells deliver protective antitumor immunity. J Immunol 2001;167:6497-502. https://doi.org/10.4049/jimmunol.167.11.6497
  26. Berends C, Hoekstra MO, Dijkhuizen B, de Monchy JG, Gerritsen J, Kauffman HF. Expression of CD35 (CR1) and CD11b (CR3) on circulating neutrophils and eosinophils from allergic asthmatic children. Clin Exp Allergy. 1993;23:926-33. https://doi.org/10.1111/j.1365-2222.1993.tb00277.x
  27. Yachie A, Toma T, Miyawaki T, Taniguchi N. Expression of surface CD11b antigen and eosinophil activation. Nippon Rinsho. 1993;51:593-7.
  28. Fleming TJ, Fleming ML, Malek TR. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 1993;151:2399-408.
  29. Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V.Derangement of immune responses by myeloid suppressor cell. Cancer Immunol Immunother. 2004;53:64-72. https://doi.org/10.1007/s00262-003-0443-2
  30. Romagnani S. T-cell responses in allergy and asthma. Curr Opin Allergy Clin Immunol. 2001;1:73-8. https://doi.org/10.1097/01.all.0000010988.60715.c8
  31. Bochner BS, Schleimer RP. The role of adhesion molecules in human eosinophils and basophils recruitment. J Allergy Clin Immunol. 1994; 94:427-38. https://doi.org/10.1016/0091-6749(94)90195-3
  32. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996;183:195-201. https://doi.org/10.1084/jem.183.1.195
  33. Wang J, Palmer K, Lotvall J, Milan S, Lei XF, Matthaei KI, Gauldie J, Inman MD, Jordana M, Xing Z. Circulating, but not local lung, IL-5 is required for the development of antigen-induced airways eosinophilia. J Clin Invest. 1998;102:1132-41. https://doi.org/10.1172/JCI2686
  34. Kung TT, Stelts D, Zurcher JA, Watnick AS, Jones H, Mauser PJ, Fernandez X, Umland S, Kreutner W, Chapman RW, Egan RW. Mechanisms of allergic pulmonary eosinophilia in the mouse. J Allergy Clin Immunol. 1994;94:1217-24. https://doi.org/10.1016/0091-6749(94)90335-2
  35. .Gulbenkian AR, Egan RW, Fernandez X, Jones H, Kreutner W, Kung T, Payvandi F, Sullivan L, Zurcher JA, Watnick AS. Interleukin-5 modulates eosinophil accumulation in allergic guinea pig lung. Am Rev Respir Dis. 1992;146:263-6. https://doi.org/10.1164/ajrccm/146.1.263
  36. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103:779-88. https://doi.org/10.1172/JCI5909
  37. Postlethwaite AE, Holness MA, Katai H, Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin. J Clin Invest. 1992;90:1479-85. https://doi.org/10.1172/JCI116015
  38. 金永勳. 晴崗醫鑑. 서울.:成輔社. 1998:129.