Tanshinone 단삼성분의 전신성 캔디다증에 대한 항균효과

Antifungal Effect of Tanshinone from Salvia miltiorrhiza against Disseminated Candidiasis

  • 한용문 (동덕여자대학교 약학대학 면역 미생물학교실) ;
  • 주인경 (동덕여자대학교 약학대학 면역 미생물학교실)
  • Han, Yongmoon (Department of ImmunoMicrobiology, College of Pharmacy, Dongduk Women's University) ;
  • Joo, Inkyung (Department of ImmunoMicrobiology, College of Pharmacy, Dongduk Women's University)
  • 투고 : 2013.02.27
  • 심사 : 2013.04.01
  • 발행 : 2013.04.30

초록

The aim of this present study was to investigate the antifungal effect of tanshinones isolated from Salvia miltiorrhiza against Candida ablicans, a polymorphic fungus. For the work, tanshinone IIA (TSN), cryptotanshinone (CTS), and dihydrotanshinone I (DTS) were chosen. Initially, their antifungal effect was analyzed by in-vitro susceptibility test. Data from the susceptibility test showed that while all of these three compounds had antifungal activity, DTS was the most potent. At $100{\mu}g$ DTS/ml, there was about 80% CFU (colony forming unit) reduction as compared to DTS-untreated C. albicans yeast cells (P<0.05). Thus, DTS was selected to determine its antifungal activity in a murine model of disseminated candidiasis due to C. albicans. Results showed that DTS enhanced resistance of mice against disseminated candidiasis. During the entire period of 30-day observation, 60% of DTS-given mice groups survived whereas control animals all died within 14 days (P<0.05). Moreover, DTS inhibited the hyphal production, one of the virulence factors of this fungus, from the blastoconidial form of the fungus. Therefore, the tanshinone appears to have antifungal activity specific for C. albicans infection, which could possibly be mediated by the blockage of hyphal production.

키워드

참고문헌

  1. Schaberg, D. R., Culver, D. H. and Gaynes R. P. : Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 16, 72S (1991).
  2. Edwards, J. E. : Invasive Candida infections: evolution of a fungal pathogen. N. Engl. J. Med. 324, 1060 (1991). https://doi.org/10.1056/NEJM199104113241511
  3. Gow, N. A., Brown, A. J. and Odds, F. C. : Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5, 366 (2002). https://doi.org/10.1016/S1369-5274(02)00338-7
  4. Bodey, G. P. : The emergence of fungi as major hospital pathogens. J. Hosp. Infect. 11, 411 (1988). https://doi.org/10.1016/0195-6701(88)90220-4
  5. Sobel, J. D. : Epidemiology and pathogenesis of recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. 152, 924 (1985). https://doi.org/10.1016/S0002-9378(85)80003-X
  6. Sobel, J. D. : Pathogenesis and epidemiology of vulvovaginal candidiasis. Ann. N. Y. Acad. Sci. 544, 547 (1988). https://doi.org/10.1111/j.1749-6632.1988.tb40450.x
  7. Odds, F. C., Brown, A. J. and Gow, N. A. : Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272 Review (2003). https://doi.org/10.1016/S0966-842X(03)00117-3
  8. Hu, P., Liang, Q. L., Luo, G. A., Zhao, Z. Z. and Jiang, Z. H. : Multi-component HPLC fingerprinting of Radix Salviae Miltiorrhizae and its LC-MS-MS identification. Chem. Pharm. Bull. (Tokyo) 53, 677 (2005). https://doi.org/10.1248/cpb.53.677
  9. Liu, M., Li, Y. G., Zhang, F., Yang, L., Chou, G. X., Wang, Z. T. and Hu, Z. B. : Chromatographic fingerprinting analysis of Danshen root (Salvia miltiorrhiza Radix et Rhizoma) and its preparations using high performance liquid chromatography with diode array detection and electrospray mass spectrometry (HPLC-DAD-ESI/MS). J. Sep. Sci. 30, 2256 (2007). https://doi.org/10.1002/jssc.200700149
  10. Gong, Y., Li, Y., Abdolmaleky, H. M., Li, L. and Zhou, J. R. : Tanshinones inhibit the growth of breast cancer cells through epigenetic modification of Aurora A expression and function. PLoS One. 7, e33656 (2012). https://doi.org/10.1371/journal.pone.0033656
  11. Kim, W. S., Kim, D. O., Yoon, S. J., Kim, M. J., Yoon, S. R., Park, Y. J., Jung, H., Kim, T. D., Kwon, B. M. and Choi, I. : Cryptotanshinone and tanshinone IIA enhance IL-15-induced natural killer cell differentiation. Biochem. Biophys. Re. Commun. 425, 340 (2012). https://doi.org/10.1016/j.bbrc.2012.07.093
  12. Tao, S., Zheng, Y., Lau, A., Jaramillo, M. C., Chau, B. T., Lantz, R. C., Wong, P. K., Wondrak, G. T. and Zhang, D. D. : Tanshinone I activates the Nrf2-dependent antioxidant response and protects against As(III)-induced lung inflammation in vitro and in vivo. Antioxid. Redox. Signal. [Epub ahead of print] (2013).
  13. Lee, W. Y., Cheung, C. C., Liu, K. W., Fung, K. P., Wong, J., Lai, P. B. and Yeung, J. H. : Cytotoxic effects of tanshinones from Salvia miltiorrhiza on doxorubicin-resistant human liver cancer cells. J. Nat. Prod. 73, 854 (2010). https://doi.org/10.1021/np900792p
  14. Jin, D. Z., Yin, L. L., Ji, X. Q. and Zhu, X. Z. : Cryptotanshinone inhibits cyclooxygenase-2 enzyme activity but not its expression. Eur. J. Pharmacol. 549, 166 (2006). https://doi.org/10.1016/j.ejphar.2006.07.055
  15. Kang, B. Y., Chung, S. W., Kim, S. H., Ryu, S. Y. and Kim, T. S. : Inhibition of interleukin-12 and interferon-gamma production in immune cells by tanshinones from Salvia miltiorrhiza. Immunopharmacology 49, 355 (2000). https://doi.org/10.1016/S0162-3109(00)00256-3
  16. Ho, J. H. and Hong. C. Y. : Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection. J. Biomed. Sci. 18, 30 (2011). https://doi.org/10.1186/1423-0127-18-30
  17. Han, Y. and Cutler, J. E. : Antibody response that protects against disseminated candidiasis. Infect. Immun. 63, 2714 (1995).
  18. Han, Y., Morrison, R. P. and Cutler, J. E. : A vaccine and monoclonal antibodies that enhance mouse resistance to Candida albicans vaginal infection. Infect. Immun. 66, 5771 (1998).
  19. Lee, J. H., Lee, J. Y., Park, J. H., Jung, H. S., Kim, J. S., Kang, S. S., Kim, Y. S. and Han, Y. : Immunoregulatory activity by daucosterol, a $\beta$-sitosterol glycoside, induces protective Th1 immune response against disseminated candidiasis in mice. Vaccine 25, 3834 (2007). https://doi.org/10.1016/j.vaccine.2007.01.108
  20. Han, Y. and Lee, J. H. : Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol. Pharm. Bull. 28, 541 (2005). https://doi.org/10.1248/bpb.28.541
  21. Han, Y. : Synergic Anticandidal effect of epigallocatechin-Ogallate combined with amphotericin B in a murine model of disseminated candidiasis and its anticandidal mechanism. Biol. Pharm. Bull. 30, 1693 (2007). https://doi.org/10.1248/bpb.30.1693
  22. Arturo, C. : Antibodies and fungi: an evolving paradigm with opportunities for the development of new antifungal therapies and vaccines. Rev. Iberoam. Micol. 14, 2 (1997).
  23. Baselski, V. S., Robison, M. K., Pifer, L. W. and Woods, D. R. : Rapid detection of Pneumocystis carinii in bronchoalveolar lavage samples by using cellufluor staining. J. Clin. Microbiol. 28, 393 (1990).
  24. Han, Y. : Synergic anticandidal effect of epigallocatechin-Ogallate combined with amphotericin B in a murine model of disseminated candidiasis and its anticandidal mechanism. Biol. Pharm. Bull. 30, 1693 (2007). https://doi.org/10.1248/bpb.30.1693
  25. Han, Y. and Lee, J. H. : Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol. Pharm. Bull. 28, 541 (2005). https://doi.org/10.1248/bpb.28.541