DOI QR코드

DOI QR Code

Relationship of Transformation Efficiency and Metabolites Induced in Korean Soybean Cotyledons Treated with Sonication

  • Received : 2012.12.28
  • Accepted : 2013.03.22
  • Published : 2013.06.30

Abstract

The interaction between Agrobacterium and soybean has been studied at the transcriptome level but not at the metabolic level. However, it is necessary to investigate the difference in metabolites between susceptible and non-susceptible cultivars for high efficiency transformation. We investigated the difference in metabolites from sonicated soybean cotyledons of Korean cultivars and Bert cultivar. To identify difference in metabolites, sonicated extracts were analysed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The soybean cultivars were classified by susceptibility using green fluorescent protein expression. We found a difference in metabolites between the high susceptible and low susceptible cultivars. The FT-ICR/MS experimental m/z data of different metabolites were compared with theoretical m/z in KNApSAcK database. The candidate list was made using KNApSAcK and focused on phenolic compounds. These candidate metabolites are speculated to influence factors in the interaction. This list of candidates may be useful to investigate the interaction between Agrobacterium and plants to increase transformation efficiency.

Keywords

References

  1. Aharoni, A., C. H. Ric de Vos, H. A. Verhoeven, C. A. Maliepaard, G. Kruppa, R. Bino, and D. B. Goodenowe. 2002. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics. a journal of integrative biology. 6(3) : 217-234. https://doi.org/10.1089/15362310260256882
  2. Baulcombe, D. C., S. Chapman, and S. Santa Cruz. 1995. Jellyfish green fluorescent protein as a reporter for virus infections. The Plant journal. for cell and molecular biology. 7(6) : 1045-1053. https://doi.org/10.1046/j.1365-313X.1995.07061045.x
  3. Berthelot, K., D. Buret, B. Guerin, D. Delay, J. Negrel, and F. M. Delmotte. 1998. vir-Gene-inducing activities of hydroxycinnamic acid amides in Agrobacterium tumefaciens. Phytochemistry. 49(6) : 1537-1548. https://doi.org/10.1016/S0031-9422(98)00209-X
  4. Bhattacharya, A., P. Sood, and V. Citovsky. 2010. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Molecular plant pathology. 11(5) : 705-719.
  5. Brencic, A., A. Eberhard, and S. C. Winans. 2004. Signal quenching, detoxification and mineralization of vir geneinducing phenolics by the VirH2 protein of Agrobacterium tumefaciens. Molecular microbiology. 51(4) : 1103-1115. https://doi.org/10.1046/j.1365-2958.2003.03887.x
  6. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science. 263(5148) : 802-805. https://doi.org/10.1126/science.8303295
  7. Clauser, K. R., P. Baker, and A. L. Burlingame. 1999. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Analytical chemistry. 71(14) : 2871-2882. https://doi.org/10.1021/ac9810516
  8. Cohen, M. F., Y. Sakihama, and H. Yamasaki. 2001. Roles of plant flavonoids in interactions with microbes. From protection against pathogens to the mediation of mutualism. Recent research developments in plant physiology : 157-173.
  9. Cushnie, T. P. T., and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. International journal of antimicrobial agents. 26(5) : 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  10. Delzer, B. W., D. A. Somers, and J. H. Orf. 1990. Agrobacterium tumefaciens Susceptibility and Plant Regeneration of 10 Soybean Genotypes in Maturity Groups 00 to II. Crop Science. 30(2) : 320-322. https://doi.org/10.2135/cropsci1990.0011183X003000020015x
  11. Ditt, R. F., E W Nester, and L. Comai. 2001. Plant gene expression response to Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences of the United States of America. 98(19) : 10954-10959. https://doi.org/10.1073/pnas.191383498
  12. Donaldson, P. A. and D. H. Simmonds. 2000. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Reports. 19 : 478-484. https://doi.org/10.1007/s002990050759
  13. Ferrazzano, G. F., I. Amato, A. Ingenito, A. De Natale, and A. Pollio. 2009. Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia. 80(5) : 255-262. https://doi.org/10.1016/j.fitote.2009.04.006
  14. Gage, D. J., T. Bobo, and S. R. Long. 1996. Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). Journal of bacteriology. 178(24) : 7159-7166.
  15. Gamborg, O. L., R. A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research. 50(1) : 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  16. Gelvin, S. B. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual review of plant physiology and plant molecular biology. 51 : 223-256. https://doi.org/10.1146/annurev.arplant.51.1.223
  17. Gunstone, F. 2001. Soybeans pace boost in oilseed production. Inform. 11 : 1287-1289.
  18. Hartmann, A., M. Schmid, D. van Tuinen, and G. Berg. 2009. Plant-driven selection of microbes. Plant and Soil. 321(1-2) : 235-257. https://doi.org/10.1007/s11104-008-9814-y
  19. Hegde, V. R., P. Dai, M. Chu, M. Patel, R. Bryant, J. Terracciano, P. R. Das, and M. S. Puar. 1997. Neurokinin receptor inhibitors: fermentation, isolation, physico-chemical properties, structure and biological activity. The Journal of antibiotics. 50(12) : 983-991. https://doi.org/10.7164/antibiotics.50.983
  20. Hinchee, M. A. W., D. V. Connor-Ward, C. A. Newell, R. E. McDonnell, S. J. Sato, C. S. Gasser, D. A. Fischhoff, D. B. Re, R. T. Fraley, and R. B. Horsch. 1988. Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Nature Biotechnology. 6(8) : 915-922 https://doi.org/10.1038/nbt0888-915
  21. Hirai, M. Y., M. Yano, D. B. Goodenowe, S. Kanaya, T. Kimura, M. Awazuhara, M. Arita, T. Fujiwara, and Kazuki Saito. 2004. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 101(27) : 10205-10210. https://doi.org/10.1073/pnas.0403218101
  22. Holton, T. A. and E. C. Cornish. 1995. Genetics and Biochemistry of Anthocyanin Biosynthesis. The Plant cell. 7(7) : 1071-1083. https://doi.org/10.1105/tpc.7.7.1071
  23. Horn, D. M., R. A. Zubarev, and F. W. McLafferty. 2000. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. Journal of the American Society for Mass Spectrometry. 11(4) : 320-332. https://doi.org/10.1016/S1044-0305(99)00157-9
  24. Iijima, Y. et al. 2008. Metabolite annotations based on the integration of mass spectral information. The Plant journal. for cell and molecular biology. 54(5) : 949-962 https://doi.org/10.1111/j.1365-313X.2008.03434.x
  25. Joubert, P., D. Beaupere, A. Wadouachi, S. Chateau, R. S. Sangwan, and B. S. Sangwan-Norreel. 2004a. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation. Journal of natural products. 67(3) : 348-351. https://doi.org/10.1021/np030281z
  26. Joubert, P., D. Beaupere, A. Wadouachi, S. Chateau, R. S. Sangwan, and B. S. Sangwan-Norreel. 2004b. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation. Journal of natural products. 67(3) : 348-351. https://doi.org/10.1021/np030281z
  27. Kado, C. I. and M. G. Heskett. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology. 60(6) : 969-976. https://doi.org/10.1094/Phyto-60-969
  28. Ko, T.-S., S. Lee, S. K. Farrand, and S. S. Korban. 2004. A partially disarmed vir helper plasmid, pKYRT1, in conjunction with 2,4-dichlorophenoxyactic acid promotes emergence of regenerable transgenic somatic embryos from immature cotyledons of soybean. Planta. 218(4) : 536-541. https://doi.org/10.1007/s00425-003-1135-z
  29. Koes, R. E., F. Quattrocchio, and J. N. M. Mol. 1994. The flavonoid biosynthetic pathway in plants. Function and evolution. BioEssays. 16(2) : 123-132. https://doi.org/10.1002/bies.950160209
  30. Latha, S. and A. Mahadevan. 1997. Role of rhizobia in the degradation of aromatic substances. World Journal of Microbiology and Biotechnology. 13(6) : 601-607. https://doi.org/10.1023/A:1018598200187
  31. Long, S. R. 1996. Rhizobium symbiosis nod factors in perspective. The Plant cell. 8(10) : 1885-1898. https://doi.org/10.1105/tpc.8.10.1885
  32. Matilla, M. A., M. Espinosa-Urgel, J. J. Rodríguez-Herva, J. L. Ramos, and M. I. Ramos-Gonzalez. 2007. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome biology. 8(9) : R179. https://doi.org/10.1186/gb-2007-8-9-r179
  33. Meurer, C. A., R. D. Dinkins, and G. B. Collins. 1998. Factors affecting soybean cotyledonary node transformation. Plant Cell Reports. 18(3-4) : 180-186. https://doi.org/10.1007/s002990050553
  34. Nakamura, Y. et al., 2007. Differential metabolomics unraveling light/dark regulation of metabolic activities in Arabidopsis cell culture. Planta. 227(1) : 57-66. https://doi.org/10.1007/s00425-007-0594-z
  35. Negishi, O. and T. Ozawa. 2000. Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds. Phytochemistry. 54(5) : 481-487. https://doi.org/10.1016/S0031-9422(00)00125-4
  36. Nester, E. W. 1995. Plant Signaling in Agrobacterium- Mediated Transformation Advances in Molecular Genetics of Plant-Microbe Interactions. Current Plant Science and Biotechnology in Agriculture 21 : 3-11.
  37. Ohta, D., D. Shibata, and S. Kanaya. 2007. Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Analytical and bioanalytical chemistry. 389(5) : 1469-1475. https://doi.org/10.1007/s00216-007-1650-z
  38. Oikawa, A., Y. Nakamura, T. Ogura, A. Kimura, H. Suzuki, N. Sakurai, Y. Shinbo, D. Shibata, S. Kanaya, and D. Ohta. 2006. Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometrybased metabolic phenotyping studies. Plant physiology. 142(2) : 398-413. https://doi.org/10.1104/pp.106.080317
  39. Olhoft, P. M., L. E. Flagel, C. M. Donovan, and David A Somers. 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta. 216(5) : 723-735.
  40. Olhoft P and D. Somers. 2001. L-Cysteine increases Agrobacteriummediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Reports 20(8) : 706-711. https://doi.org/10.1007/s002990100379
  41. Oparka, K. J., A. G. Roberts, S. S. Cruz, P. Boevink, D. A. M. Prior, and A. Smallcombe. 1997. Using GFP to study virus invasion and spread in plant tissues. Nature. 388 : 401-402. https://doi.org/10.1038/41145
  42. Owens, L. D. and A. C. Smigocki. 1988. Transformation of Soybean Cells Using Mixed Strains of Agrobacterium tumefaciens and Phenolic Compounds. Plant physiology. 88(3) : 570-573. https://doi.org/10.1104/pp.88.3.570
  43. Parker, J. E., M. J. Coleman, V. Szabo, L. N. Frost, R. Schmidt, E. A. van der Biezen, T. Moores, C. Dean, M. J. Daniels, and J. D. Jones. 1997. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. The Plant cell. 9(6) : 879-894. https://doi.org/10.1105/tpc.9.6.879
  44. Santarém, E. R., H. N. Trick, J. S. Essig, and J. J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons optimization of transient expression. Plant Cell Reports. 17(10) : 752-759. https://doi.org/10.1007/s002990050478
  45. Schmutz, J. et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature. 463(7278) : 178-183. https://doi.org/10.1038/nature08670
  46. Shinbo, Y., Y. Nakamura, M. Altaf-Ul-Amin, H. Asahi, K. Kurokawa, M. Arita, K. Saito, D. Ohta, D. Shibata, and S. Kanaya. 2006. KNApSAcK: A Comprehensive Species- Metabolite Relationship Database. Plant Metabolomics. 57 : 165-181. https://doi.org/10.1007/3-540-29782-0_13
  47. Spencer, P. A. and G. H. N. Towers. 1988. Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry. 27(9) : 2781-2785. https://doi.org/10.1016/0031-9422(88)80663-0
  48. Stachel, S. E., E. Messens, M. V. Montagu, and P. Zambryski. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature. 318(6047) : 624-629. https://doi.org/10.1038/318624a0
  49. Stougaard, J. 2000. Regulators and regulation of legume root nodule development. Plant physiology. 124(2) : 531-540. https://doi.org/10.1104/pp.124.2.531
  50. Strohalm, M., D. Kavan, P. Novak, M. Volny, and V. Havlicek. 2010. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Analytical chemistry. 82(11) : 4648-4651. https://doi.org/10.1021/ac100818g
  51. Taguri, T., T. Tanaka, and I. Kouno. 2006. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biological & pharmaceutical bulletin. 29(11) : 2226-2235. https://doi.org/10.1248/bpb.29.2226
  52. Tang, W. 2003. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant cell reports. 21(6) : 555-562.
  53. Tautenhahn, R., C. Bottcher, and S. Neumann. 2007. Annotation of LC/ESI-MS Mass Signals. Bioinformatics Research and Development. 4414 : 371-380. https://doi.org/10.1007/978-3-540-71233-6_29
  54. Titulaer, M. K., I. Siccama, L. J. Dekker, A. L. C. T. van Rijswijk, R. M. A. Heeren, P. A. Sillevis Smitt, and T. M. Luider. 2006. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls. BMC bioinformatics. 7 : 403. https://doi.org/10.1186/1471-2105-7-403
  55. Trick, H. N. and J. J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Reports. 17(6-7) : 482-488. https://doi.org/10.1007/s002990050429
  56. Trick, H. N. and J. J. Finer. 1997. SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Research. 6(5) : 329-336. https://doi.org/10.1023/A:1018470930944
  57. Tzfira, T. and V. Citovsky. 2002. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends in cell biology. 12(3) : 121-129. https://doi.org/10.1016/S0962-8924(01)02229-2
  58. Veena, H. Jiang, R. W. Doerge, and S. B. Gelvin. 2003. Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. The Plant journal. 35(2) : 219-236. https://doi.org/10.1046/j.1365-313X.2003.01796.x
  59. Yan, B., M. S. S. Reddy, G. B. Collins, and R. D. Dinkins. 2000. Agrobacterium tumefaciens- mediated transformation of soybean [Glycine max (L.) Merrill.] using immature zygotic cotyledon explants. Plant Cell Reports. 19(11) : 1090-1097. https://doi.org/10.1007/s002990000236
  60. Zaltsman, A., A. Krichevsky, S. V. Kozlovsky, F. Yasmin, and V. Citovsky. 2010. Plant defense pathways subverted by Agrobacterium for genetic transformation. Plant signaling & behavior. 5(10) : 1245-1248. https://doi.org/10.4161/psb.5.10.12947
  61. Zeng, P., D. A. Vadnais, Z. Zhang, and J. C. Polacco. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant cell reports. 22(7) : 478-482. https://doi.org/10.1007/s00299-003-0712-8
  62. Zerback, R., K. Dressler, and D. Hess. 1989. Flavonoid compounds from pollen and stigma of Petunia hybrid, Inducers of the vir region of the Agrobacterium tumefaciens Ti plasmid. Plant Science. 62(1) : 83-91. https://doi.org/10.1016/0168-9452(89)90192-1

Cited by

  1. Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant–Agrobacterium tumefaciens interaction vol.121, pp.1, 2015, https://doi.org/10.1007/s11240-014-0693-z
  2. Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave vol.14, pp.1, 2019, https://doi.org/10.1371/journal.pone.0200174
  3. Metabolomic Profiling, Antioxidant and Anti-inflammatory Activities of Hypericum Species Growing in South Korea vol.12, pp.7, 2013, https://doi.org/10.1177/1934578x1701200710