DOI QR코드

DOI QR Code

Damage Protection Technology by Potentiostatic Method of Cu Alloy Under Cavitation Environment in Seawater

해수 내 캐비테이션 환경에서 동합금의 정전위법에 의한 손상 방지 기술

  • 김성종 (목포해양대학교 기관시스템공학부) ;
  • 박재철 ((사)한국선급 녹색산업기술원) ;
  • 장석기 (목포해양대학교 기관시스템공학부)
  • Received : 2013.06.03
  • Accepted : 2013.06.20
  • Published : 2013.06.30

Abstract

This investigation was to identify the electrochemical corrosion protection conditions to minimize the cavitation damage by generating hydrogen gas with the means of hydrogen overvoltage before the impact pressure of the cavity is transferred to the surface. The hybrid potentiostatic test method is designed to evaluate a complexed cavitation and electrochemical characteristic for ALBC3 alloy that is diverse and its broad applications fields in marine industry. The surface observation showed that neither the cavitation damage nor the electrochemical damage by the hydrogen gas generation occurred in the potential of -2.6 V under the cavitation environment. In the potentiostatic experiments under the cavitation environment, the cavities were reflected or cancelled out by the collision of the cavities with the hydrogen gas generated by the hydrogen overvoltage.

Keywords

References

  1. S. M. Hong, M. K. Lee, G. H. Kim, C. K. Rhee, J. Kor. Inst. Surf. Eng., 39 (2006) 35.
  2. S. J. Kim, S. J. Lee, Corros. Sci. Tech., 10 (2011) 101.
  3. C. H. Tang, F. T. Cheng, H. C. Man, Surf. Coat. Technol., 200 (2006) 2602. https://doi.org/10.1016/j.surfcoat.2004.12.021
  4. S. S. Tan, J. A. Wharton, R. J. K. Wood, Wear, 258 (2005) 629. https://doi.org/10.1016/j.wear.2004.02.019
  5. Y. Zheng, S. Luo, W. Ke, Wear, 262 (2007) 1308. https://doi.org/10.1016/j.wear.2007.01.006
  6. N. Latona, P. Fetherston, A. Chen, K. Sridharan, R. A. Dodd, Corrosion, 57 (2001) 884. https://doi.org/10.5006/1.3290315
  7. C. T. Kwok, F. T. Cheng, H. C. Man, Mater. Sci. Eng., A, 290 (2000) 55. https://doi.org/10.1016/S0921-5093(00)00929-1
  8. A. Neville, T. Hodgkiess, Br. Corros. J., 32 (1997) 197. https://doi.org/10.1179/000705997798114904
  9. H. Y. Ha, C. J. Park, H. S. Kwon, Corros. Sci., 49 (2007) 1266. https://doi.org/10.1016/j.corsci.2006.08.017
  10. H. I. Lee, M. S. Han, K. K. Baek, C. H. Lee, C. S. Shin, M. K. Chung, Corros. Sci. Tech., 7 (2008) 274.
  11. Marcel Pourbaix, Atlas of Electrochemical Equilibria, NACE, (1974) 384.
  12. G. Bregliozzia, A. D. Schinob, S. I. U. Ahmeda, J. M. Kennyb, H. Haefkea, Wear, 258 (2005) 503. https://doi.org/10.1016/j.wear.2004.03.024
  13. M. H. Im, Corros. Sci. Tech., 10 (2011) 218.
  14. A. M. Elhoud, N. C. Renton, W. F. Deans, Int. J. Hydrogen Energy, 35 (2010) 6455. https://doi.org/10.1016/j.ijhydene.2010.03.056
  15. T. Michler, J. Naumann, Int. J. Hydrogen Energy, 35 (2010) 821. https://doi.org/10.1016/j.ijhydene.2009.10.092
  16. T. Michler, Y. W. Lee, R. P. Gangloff, J. Naumann, Int. J. Hydrogen Energy, 34 (2009) 3201. https://doi.org/10.1016/j.ijhydene.2009.02.015