DOI QR코드

DOI QR Code

A Comparison in Growth and Water Use Efficiency between Superior and Inferior Families from Open-Pollinated Progenies of Pinus densiflora under Different Environmental Conditions

소나무 풍매차대 검정림에서의 생장 우수가계와 불량가계간 입지환경에 따른 생장과 수분이용효율 비교

  • Oh, Chang-Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sang-Urk (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Cheon, Byung-Whan (Korea Forestry Promotion Institute) ;
  • Oh, Chan-Jin (Jeollanam-do Forest Resources Research Institute)
  • 오창영 (국립산림과학원 산림유전자원부) ;
  • 한상억 (국립산림과학원 산림유전자원부) ;
  • 전병환 (한국임업진흥원) ;
  • 오찬진 (전남산림자원연구소)
  • Received : 2013.04.05
  • Accepted : 2013.06.24
  • Published : 2013.06.30

Abstract

To understand the relationship of growth and water use efficiency (WUE) between superior and inferior families from open-pollinated progenies of P. densiflora, two families (one superior and one inferior families) in two open-pollinated progeny test sites were selected using volume growth at 26 years. And we compared environmental factors and WUE which was calculated from measured ${\delta}^{13}C$ in the wood. The ${\delta}^{13}C$ change during the last 20 years showed steady decrease and same pattern as WUE in the fertile site, while there was an inverse relationship between ${\delta}^{13}C$ and WUE in poor site, indicating an interaction between gene and environment. The superior family showed higher WUE than inferior family in poor site, indicating efficient stomatal control of the former under water stress. Water use efficiency calculated by carbon isotope composition can be used as a selection criterion for drought tolerance families in open-pollinated progenies of P. densiflora.

본 연구는 소나무 풍매차대를 대상으로 환경이 다른 두 지역에서 토양 양료 수준, 강수량 등을 조사하여 이를 생장, 수분이용효율과 비교함으로써 현지에서 건조스트레스를 받았는지 확인하고, 건조스트레스에 의한 반응에서 수분이용효율이 유전적으로 구분되는지 구명하고자 하였다. 소나무 풍매차대 26년생의 재적생장을 이용하여 생장 우수가계와 불량가계를 구분하였다. 수분이용효율은 건조기에는 증가하는 것으로 나타났다. 지난 20년간 토양 양료 조건이 좋은 곳에서는 탄소안정성동위원소 함량비는 서서히 감소하는 경향이었으며, 수분이용효율 역시 비슷한 경향으로 나타났다. 하지만 토양 양료 조건이 좋지 않은 곳에서는 유전적 요인과 환경적 요인의 상호작용으로 탄소안정성동위원소 함량비와 수분이용효율은 반대의 경향으로 나타났다. 생장 우수가계는 수분 스트레스를 받는 상황에서 기공을 효과적으로 조절하여 불량가계에 비하여 토양이 불량한 지역에서 높은 수분이용효율을 나타냈다. 결론적으로 탄소안정성동위원소 함량비를 이용한 수분이용효율은 소나무 풍매차대를 대상으로 건조스트레스에 대한 선발 기준으로 이용할 수 있다.

Keywords

References

  1. Archibald, O. W., 1995: Mediterranean ecosystems. Ecology of World Vegetation. O. W. Archibald (Eds.), Chapman & Hall, 131-164.
  2. Bert, D., S. W. Leavitt, and J. L. Dupouey, 1997: Variations of wood ${\delta}^{13}C$ and water-use efficiency of Abies alba during the last century. Ecology 78, 1588-1596.
  3. Bond, W. J., and W. D. Stock, 1990: Preliminary assessment of the grading of Eucalyptus clones using carbon isotope discrimination. Southern African Forestry Journal 154, 51-54. https://doi.org/10.1080/00382167.1990.9629052
  4. Brendel, O., D. Pot, C. Plomion, P. Rozenberg, and J. M. Guehl, 2002: Genetic parameters and QTL analysis of ${\delta}^{13}C$ and ring width in maritime pine. Plant, Cell and Environment 25, 945-953. https://doi.org/10.1046/j.1365-3040.2002.00872.x
  5. Brugnoli, E., K. T. Hubick, S. von Caemmerer, S. C. Wong, and G. D. Farquhar, 1988: Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiology 88, 1418-1424. https://doi.org/10.1104/pp.88.4.1418
  6. Codon, A. G., R. A. Richards, G. J. Tebetzke, and G. D. Farquhar, 2004: Breeding for high water-use efficiency. Journal of Experimental Botany 55, 2447-2460 https://doi.org/10.1093/jxb/erh277
  7. Damesin, C., S. Rambal, and R. Joffre, 1998: Co-occurrence of trees with different leaf habit: a functional approach on Mediterranean oaks. Acta Oecologia. 19, 195-204. https://doi.org/10.1016/S1146-609X(98)80024-6
  8. Evans, J. R., and S. von Caemmerer, 1996: Carbon dioxide diffusion inside leaves. Plant Physiology 110, 339-346. https://doi.org/10.1104/pp.110.2.339
  9. Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick, 1989: Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology 40, 503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443
  10. Farquhar, G. D., M. H. O'Leary, and J. A. Berry, 1982: On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9, 121-137. https://doi.org/10.1071/PP9820121
  11. February, E. C., and W. D. Stock, 1999: Declining trend in the $^{13}C/^{12}C$ ratio of atmospheric carbon dioxide from tree rings of Soouth African Widdringtonia cedarbergensis. Quaternary Research 52, 229-236. https://doi.org/10.1006/qres.1999.2057
  12. Feng, X., 1998: Long-term ci/ca response of trees in western North America to atmospheric $CO_2$ concentration derived from carbon isotope chronologies. Oecologia 117, 19-25. https://doi.org/10.1007/s004420050626
  13. Grant O. M., M. M. Chaves, and H. G. Jones, 2006: Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions. Physiologia Plantarum 27, 507-518.
  14. Han, S. U., C. Y. Oh, C. S. Kim, Y. J. Kim, K. N. Kang, and S. M. Lee, 2007: Time trends for genetic parameters of growth traits in open-pollinated progenies of Pinus densiflora. Korean Journal of Breeding Society 39, 457-463. (in Korean with English abstract)
  15. Johnsen, K. H., L. B. Flanagan, D. A. Huber, and J. E. Major, 1999: Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half diallel mating design using field grown trees. Canadian Journal of Forest Research 29, 1727-1735. https://doi.org/10.1139/x99-144
  16. Johnsen, K. H., and J. E. Major, 1995: Gas exchange of 20-year-old black spruce families displaying a genotype ${\times}$ environment interaction in growth rate. Canadian Journal of Forest Research 25, 430-439. https://doi.org/10.1139/x95-048
  17. Kleiner, K. W., M. D. Abrams, and J. C. Schultz, 1992: The impact of water and nutrient deficiencies on the growth, gas exchange and water relations of red oak and chestnut oak. Tree Physiology 11, 271-278. https://doi.org/10.1093/treephys/11.3.271
  18. Korea Forest Service, 2008: Statistical Year Book of Forestry.
  19. Korol, R. L., M. U. F. Kirschbaum, G. D. Farquhar, and M. Jeffreys, 1999: Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiology 19, 551-562. https://doi.org/10.1093/treephys/19.9.551
  20. Lee, K. J., 2011: Tree Physiology (3rd ed.). Seoul National University Press, 536pp
  21. McNulty, S. G., and W. T. Swank, 1995: Wood ${\delta}^{13}C$ as a measure of annual basal area growth and soil water stress in a Pinus strobus forest. Ecology 76, 1581-1586. https://doi.org/10.2307/1938159
  22. Meinzer, F. C., G. Goldstein, and D. A. Grantz, 1990: Carbon isotope discrimination in coffee genotypes grown under limited water supply. Plant Physiology 92, 130-135. https://doi.org/10.1104/pp.92.1.130
  23. Oh, C. Y., S. U. Han, and C. S. Kim, 2008: Differences of physiological responses according to growing conditions between superior family and inferior family in Pinus densiflora. Korean Journal of Breeding Society 40, 136-142. (in Korean with English abstract)
  24. Oh, C. Y., S. U. Han, K. J. Lee, C. S. Kim, C. J. Oh, and D. H. Ji, 2009: Family selection on height growth in open-pollinated progeny trials of Pinus densiflora using relative height growth rate. Korean Journal of Breeding Society 41, 220-227. (in Korean with English abstract)
  25. Osorio, J., and J. S. Pereira, 1994: Genotypic differences in water use efficiency and $^{13}C$ discrimination in Eucalyptus globulus. Tree Physiology 14, 871-882. https://doi.org/10.1093/treephys/14.7-8-9.871
  26. Pita, P., F. Soria, I. Canas, G. Toval, and J. A. Pardos, 2001: Carbon isotope discrimination and its relationship to drought under field conditions in genotypes of Eucalyptus globules Labill. Forest Ecology and Management 141, 211-221. https://doi.org/10.1016/S0378-1127(00)00330-3
  27. Prasolova, N. V., Z. H. Xu, G. D. Farquhar, P. G. Saffigna, and M. J. Dieters, 2001: Canopy carbon and oxygen isotope composition of 9-year-old hoop pine families in relation to seedling carbon isotope composition, growth, field growth performance, and canopy nitrogen concentration. Canadian Journal of Forest Research 31, 673-681.
  28. Rajabi, A., H. Griffiths, E. S. Ober, W. Kromdijk, and J. D. Pidgeon, 2008: Genetic characteristics of water-use related traits in sugar beet. Euphytica 160, 175-187. https://doi.org/10.1007/s10681-007-9520-5
  29. Saurer, M., and U. Siegenthaler, 1989: $^{13}C/^{12}C$ isotope ratios in trees are sensitive to relative humidity. Dendrochronologia 7, 9-13.
  30. Saurer, M., R. T. W. Siegwolf, and F. H. Schweingruber, 2004: Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology 10, 2109-2120. https://doi.org/10.1111/j.1365-2486.2004.00869.x
  31. Schulze, E. D., 1986: Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annual Review of Plant Physiology and Plant Molecular Biology 37, 247-274. https://doi.org/10.1146/annurev.pp.37.060186.001335
  32. Schulze, E. D., R. J. Williams, G. D. Farquhar, W. Schulze, J. Langridge, J. M. Miller, and B. H. Walker, 1998: Carbon nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology 25, 413-425. https://doi.org/10.1071/PP97113
  33. Warren, C. R., 2006: Estimating the internal conductance to $CO_2$ movement. Functional Plant Biology 33, 431-442. https://doi.org/10.1071/FP05298
  34. Warren, C. R., J. F. McGrath, and M. A. Adams, 2001: Water availability and carbon isotope discrimination in conifers. Oecologia 127, 476-486. https://doi.org/10.1007/s004420000609
  35. Xu, Z. H., P. G. Saffigna, G. D. Farquhar, J. A. Simpson, R. J. Haines, S. Walker, D. O. Osborne, and D. Guinto, 2000: Carbon isotope discrimination and oxygen isotope composition in clones of the F1 hybrid between slash pine and Caribbean pine in relation to tree growth, water use efficiency and foliar nutrient concentration. Tree Physiology 20, 1209-1217. https://doi.org/10.1093/treephys/20.18.1209
  36. Yordanov, I., V. Velikova, and T. Tsonev, 2000: Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38, 171-186. https://doi.org/10.1023/A:1007201411474
  37. Zhang, J. W., and J. D. Marshall, 1995: Variation in carbon isotope discrimination and photosynthetic gas exchange among populations of Pseudotsuga menziesii and Pinus ponderosa in different environment. Functional Ecology 9, 402-412. https://doi.org/10.2307/2390003

Cited by

  1. Identification of a potential metabolic marker, inositol, for the inherently fast growth trait by stems of Pinus densiflora via a retrospective approach vol.45, pp.6, 2015, https://doi.org/10.1139/cjfr-2014-0378