DOI QR코드

DOI QR Code

Study of Plasma Polymerization on Wood Powder/PP Composites Interface

플라즈마 처리가 목분/폴리프로필렌 복합재의 계면에 미치는 영향 연구

  • 하종록 (한국기계연구원 부설 재료연구소 복합재료센터) ;
  • 김병선 (한국기계연구원 부설 재료연구소 복합재료센터) ;
  • 이진우 (한국기계연구원 부설 재료연구소 복합재료센터)
  • Received : 2013.05.10
  • Accepted : 2013.06.11
  • Published : 2013.06.30

Abstract

Atmospheric glow plasma polymerization was applied to wood powder before fabricating polypropylene (PP) matrix composites. Seven different types of monomers (Oxygen, Benzene, CH4, Acrylic-acid, Hexafluoroethane, Trifluorotolune, Hexamethyl-disiloxane) were analyzed to determine the most suitable precursor for plasma polymerization. The surface energy was calculated from measured contact angle about each monomer on PP. Hexamethyl-disiloxane (HMDSO) had a highest surface energy and is selected as the most suitable monomer. Wood powder and polypropylene were mixed as pellets by twin screw extruder and then 50 wt% wood powder/PP composites were produced by an injection machine. Tensile strength and Flexural strength have improved by 7.59% and 12.43% at the maximum respectively. SEM (Scanning Electron Microscope) observation on the fracture surface revealed that the plasma polymerization have improved the interfacial bonding and the mechanical properties of the composites.

상온 상압 플라즈마 표면처리된 목분을 폴리프로필렌(polypropylene)과 혼합하였을 때 두 재료의 계면에 미치는 영향을 연구하였다. 목분과 폴리프로필렌을 압출기를 통해 기계적으로 혼합한 후 사출기를 이용하여 목분함유량 50 wt% 목분/폴리프로필렌(Wood Plastic Composite, WPC) 복합재를 제조하였다. 플라즈마 표면처리 공정에 가장 적합한 Monomer(모노머)를 찾기 위해 Oxygen, Benzene, CH-4, Acrylic-acid, Hexafluoroethane, Trifluorotolune, Hexamethyl-disiloxane(HMDSO) 등 7가지의 모노머에 대해 Contact angle(접촉각)을 측정하여 표면에너지를 계산하였다. 그 결과 HMDSO가 가장 높은 표면에너지를 나타내어 플라즈마 공정의 모노머로 적용하였다. 소수성인 폴리프로필렌과 친수성인 목분을 플라즈마 표면처리를 통하여 목분의 표면을 개질하였고 두 재료의 계면 결합력을 향상시킬 수 있었다. 기계적 물성평가 결과는 인장강도의 경우 최대 7.59%, 굴곡강도의 경우 최대 12.43%가 증가하였다. SEM(Scanning Electron Microscope)을 이용하여 파단면을 관찰하였고 플라즈마 표면처리의 효과를 확인하였다.

Keywords

References

  1. Morton and Rossi, L., "Current and Emerging Applications for Natural and Wood Fiber Composite," Proc. 7th International Conference on Wood Fiber Composites, Madison, WI, Forest Product Society, 2003.
  2. Clemons, C., and Caufield, D., "Functional Filler for Plastics," Wood Powder, 249-1st Ed., 2005.
  3. Kim, B.S., Kim, M.M., Ha, J.R., Um, M.K., and Chun, B.H., "High performance Structure and Materails," WIT Transactions, Vol. 112, 2010, pp. 271-277.
  4. Zhang Y.C., Toghiani, H., Zhang, J.L., Xue, Y.B., and Pittman, C.U., "Studies of Surface-modified Wood Flour/Polypropylene Composites," Journal of Materials Science, Vol. 44, No. 8, 2003.
  5. Nunez, A.J., Sturm, P.C., and Kenny, J.M., "Mechanical Characterization of Polypropylene-wood Flour Composites," Journal of Applied Polymer Science, Vol. 88, No. 6, 2003.
  6. Salemane, M.G., and Luyt, A.S., "Thermal and Mechanical Properties of Polypropylene-wood Powder Composites," Journal of Applied Polymer Science, Vol. 100, No. 5, 2006.
  7. Danyadi, L., Renner, K., Moczo, J., and Pukanszky, B., "Wood Flour Filled Polypropylene Composites: Interfacial Adhesion and Micromechanical Deformations," Polymer Engineering and Science, Vol. 47, No. 8, 2007.
  8. Park, I., and Lee, H.L., "Analysis of the Surface Characterisitic of Micrestickies by Contact Angle Measurement," Journal of Korea TAPPI, Vol. 37, No 2, 2005.