DOI QR코드

DOI QR Code

Analysis of CO2 Distribution Properties Using GOSAT : a Case Study of North-East Asia

GOSAT을 활용한 이산화탄소 분포 특성 분석 : 동북아시아를 사례로

  • Choi, Jin Ho (Department of Spatial Information, Kyungpook National University) ;
  • Um, Jung Sup (Department of Geography, Kyungpook National University)
  • Received : 2013.04.22
  • Accepted : 2013.06.03
  • Published : 2013.06.30

Abstract

This study determined the spatial distribution characteristics of carbon dioxide in Northeast Asia, connecting land coverage and vegetation index that have influence on concentration and distribution of carbon dioxide measured by GOSAT with GIS spatial analysis method. The results visibly showed that the spatial distribution of carbon dioxide had different patterns in dependent on the present status of land use in its surrounding area. Such high concentration of carbon dioxide was formed in developed sites like cities while forest areas showed low concentration of it. We also found that there were relatively high negative(-) correlations between carbon dioxide and vegetation, in statistically significant level. It is expected to be used as a basic data for establishing measures to reduce greenhouse gas in the future.

본 연구에서는 GOSAT으로부터 측정된 이산화탄소 농도와 이산화탄소의 분포에 영향을 미치는 토지피복, 식생지수 등을 GIS 공간분석기법과 연계하여 동북아시아 지역 이산화탄소의 공간적 분포 특성을 규명하였다. 그 결과 이산화탄소의 공간적 분포는 그 주변지역의 토지이용현황에 따라 그 패턴을 달리한다는 사실을 가시적으로 확인할 수 있었으며 이산화탄소는 도시와 같은 개발지에서 높은 농도대를 형성하는 반면 산림지역에서는 낮게 나타나고 있음을 확인할 수 있었다. 또한 이산화탄소와 식생 간에는 통계적으로 유의한 수준에서 비교적 높은 부(-)의 상관관계가 존재함을 확인할 수 있었다. 이는 향후 온실가스 저감 대책 및 완화를 위한 계획 수립에 있어 그 기초자료로 활용되어 질 수 있을 것으로 판단된다.

Keywords

References

  1. Butz, A., S. Guerlet, O. Hasekamp, D. Schepers, A. Galli, I. Aben, C. Frankenberg, J. M. Hartmann, H. Tran, A, Kuze, G. Keppel-Aleks, G. Toon, D. Wunch, P. Wennberg, N. Deutscher, D. Griffith, R. Macatangay, J. Messerschmidt, J. Notholts, and T. Warneke, 2011, Toward accurate $CO_2$ and $CH_4$ observations from GOSAT, Geophysical Research Letter, 38(14), pp. 1-6.
  2. Choi J. H., Um J. s., 2011, Comparative evaluation among different kriging techniques applied to GOSAT $CO_2$ map for north east asia, Korean Society Of Environmental Impact Assessment, 20(6), pp. 879-890.
  3. Choi J. H., Um J. s., 2012, Comparative evaluation for seasonal $CO_2$ flows tracked by GOSAT in northeast Asia, Korea Spatial Information Society, 20(25), pp. 1-13.
  4. Hammerling D. M., Michalak A. M. and Kawa S. R., 2012, Global $CO_2$ distributions over land from the Greenhouse Gases Observing Satellite(GOSAT), Geophysical Reserch Letters, 33, L08804.
  5. Houghton, R. A., Hackler, J. L., and Lawrence, K. T., 1999, The U.S. carbon budget: contribution from land-use change, Science, 285(5427), pp. 574-578. https://doi.org/10.1126/science.285.5427.574
  6. Jacques, G., and B. Henry., 2011, Measurement of greenhouse gases with the GOSAT-TANSO instrument, APCAS Conference on Environmental Monitoring, pp. 1-23.
  7. Kim S. I., Han K. S. and Pi K. J., 2011, The trend analysis of vegetation change applied to unsupervised classification over east asia: using the ndvi 10-day data in 1999-2010, The Korean Society For Geospatial Information System, 19(4), pp. 153-159.
  8. Lal M., Harasawa H., 2001, Future climate change scenarios for ASIA as inferred from selected coupled atmosphere ocean global climate models, Journal of the Meteorological Society of Japan, 79, pp. 219-227. https://doi.org/10.2151/jmsj.79.219
  9. Shim, C. S., 2010, Source/sinks analysis with satellite sensing for exploring global atmospheric $CO_2$ distributions, Korea Environment Institute.
  10. Tomosada M., Kanefuji K., Matsumoto Y. and Tsubaki H., 2009, A prediction method of the global distribution map of $CO_2$ column abundance retrieved from GOSAT observation derived from ordinary kriging", ICROS-SICE International Joint Conference 2009, pp. 4869-4873.
  11. WMO, 2009, Technical report of global analysis method for greenhouse gases by world data center for greenhouse gases.
  12. Yan Qu, Chunmin Zhang, Dingyi Wang, Pengbo Tian, Wenguang Bai, Xingying Zhang, Peng Zhang, Haishan Dai and Qingmiao Wu, 2013, Comparison of atmospheric $CO_2$ observed by GOSAT and two ground stations in China, International Journal of Remote Sensing, 34(11), pp. 3938-3946. https://doi.org/10.1080/01431161.2013.768362
  13. Yang, L., Xiufeng, W., Meng, G., and Hiroshi, T., 2011, Mapping the FTS SWIR L2 product of $XCO_2$and XCH4 data from the GOSAT by kriging method - a case study in East Asia, International Journal of Remote Sensing, 33(10), pp. 3004-3025.
  14. Yoo S. H., Heo J., Jung J. H., Han S. H and Kim K. M., 2011, Estimation of aboveground biomass carbon stock using landsat tm and ratio images - kNN algorithm and regression model priority, The Korean Society For Geospatial Information System, 19(2), pp. 39-48.
  15. ZENG ZhaoCheng, LEI LiPing, GUO LiJie, ZHANG Li and ZHANG Bing, 2012, Incorporating temporal variability to improve geostatistical analysis of satellite-observed $CO_2$ in China, Chinese Science Bulletin, 10.1007/s11434-012-5652-7.
  16. Zhang, C. M., 2010, Interference imaging spectrometer technology, pp.1-200, Beijing, Sicence Press.

Cited by

  1. Concentration Observed by the KGAWC Station vol.22, pp.2, 2014, https://doi.org/10.7319/kogsis.2014.22.2.011
  2. 동북아시아에서 GOSAT CO2와 MODIS 식생지수 분포의 상관성 분석 vol.21, pp.5, 2013, https://doi.org/10.12672/ksis.2013.21.5.015
  3. Performance evaluation of OCO-2 XCO2 signatures in exploring casual relationship between CO2 emission and land cover vol.24, pp.4, 2013, https://doi.org/10.1007/s41324-016-0044-8
  4. Evaluating co-relationship between OCO-2 XCO2 and in situ CO2 measured with portable equipment in Seoul vol.24, pp.5, 2016, https://doi.org/10.1007/s41324-016-0053-7