DOI QR코드

DOI QR Code

Fire Detection Approach using Robust Moving-Region Detection and Effective Texture Features of Fire

강인한 움직임 영역 검출과 화재의 효과적인 텍스처 특징을 이용한 화재 감지 방법

  • Nguyen, Truc Kim Thi (School of Electrical Engineering, University of Ulsan) ;
  • Kang, Myeongsu (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Cheol-Hong (School of Computer and Electronics Engineering, Chonnam National University) ;
  • Kim, Jong-Myon (School of Electrical Engineering, University of Ulsan)
  • Received : 2012.11.13
  • Accepted : 2013.02.07
  • Published : 2013.06.28

Abstract

This paper proposes an effective fire detection approach that includes the following multiple heterogeneous algorithms: moving region detection using grey level histograms, color segmentation using fuzzy c-means clustering (FCM), feature extraction using a grey level co-occurrence matrix (GLCM), and fire classification using support vector machine (SVM). The proposed approach determines the optimal threshold values based on grey level histograms in order to detect moving regions, and then performs color segmentation in the CIE LAB color space by applying the FCM. These steps help to specify candidate regions of fire. We then extract features of fire using the GLCM and these features are used as inputs of SVM to classify fire or non-fire. We evaluate the proposed approach by comparing it with two state-of-the-art fire detection algorithms in terms of the fire detection rate (or percentages of true positive, PTP) and the false fire detection rate (or percentages of true negative, PTN). Experimental results indicated that the proposed approach outperformed conventional fire detection algorithms by yielding 97.94% for PTP and 4.63% for PTN, respectively.

본 논문은 그레이레벨히스토그램을 이용한 움직임 영역검출, 퍼지 클러스터링을 이용한 칼라 분할, 그레이 레벨 동시발생 행렬을 이용한 특징 추출 및 서포터 벡터 머신을 이용한 화재 분류 등과 같은 다중 이종 알고리즘을 포함하고 있는 효과적인 화재 감지 방법을 제안한다. 제안한 방법은 움직임 영역을 검출하기 위해그레이레벨히스토그램에 기초한 최적의 임계값을 결정하고 난 후, CIE LAB 칼라 공간에서 퍼지 클러스터링을 적용하여 칼라 분할을 수행한다. 이러한 두 단계는 화재의 후보 영역을 기술하는데 도움이 된다. 다음으로 그레이 레벨 동시발생 행렬을 이용하여 화재의 특징을 추출하고, 이러한 특징들은 화재인지 아닌지를 분류하기 위해 서포터 벡터 머신의 입력으로 사용된다. 제안한 방법을 평가하기위해 기존의 두 알고리즘과 화재 검출율 및 오류 화재 검출율에서 비교하였다. 모의실험결과, 제안한 방법은 97.94%의 화재 검출율 및 4.63%의 오류 화재 검출율을 보임으로써 기존의 화재 감지 알고리즘보다 우수성을 보였다.

Keywords

References

  1. T.-H. Chen, P.-H. Wu, and Y.-C. Chiou, "An Early Fire-Detection Method Based on Image Processing," in International Conference on Image Processing, vol. 3, pp. 1707-1710, Oct. 2004.
  2. T. Celik and H. Demirel, "Fire Detection in Video Sequences Using a Generic Color Model," Fire Safety Journal, vol. 44, no. 2, pp. 147-158, Feb. 2009. https://doi.org/10.1016/j.firesaf.2008.05.005
  3. S.-M. Kang and J.-M. Kim, "Survey for Early Detection Techniques of Smoke and Flame using Camera Images", Journal of The Korea Society of Computer Information, vol. 16, no. 4, pp. 45-54, April 2011. https://doi.org/10.9708/jksci.2011.16.4.043
  4. P. V. K. Borges and E. Izquierdo, "A Probabilistic Approach for Vision-Based Fire Detection in Videos," IEEE Trans. Circuits and Systems for Video Technology, vol. 20, no. 1, pp. 721-731, May 2010. https://doi.org/10.1109/TCSVT.2010.2045813
  5. B. U. Toreyin, Y. Dedeoglu, U. Gudukbay, and A. E. Centin, "Computer Vision-Based Method for Real-Time Fire and Flame Detection," Patt. Recogn. Lett., vol. 27, no. 1, pp. 49-58, Jan. 2006. https://doi.org/10.1016/j.patrec.2005.06.015
  6. B. C. Ko, K.-H. Cheong, and J.-Y. Nam, "Fire Detection Based on Vision Sensor and Support Vector Machines." Fire Safety Journal, vol. 44, no. 3, pp. 322- 329, April 2009. https://doi.org/10.1016/j.firesaf.2008.07.006
  7. Y.-M. Kim, C.-H. Hwang, C.-H. Kim, and J.-M. Kim, "Hardware Design and Implementation of a Parallel Processor for High-Performance Multimedia Processing," Journal of The Korea Society of Computer Information, Vol. 16, No. 5, pp. 1-11, May 2011. https://doi.org/10.9708/jksci.2011.16.5.001
  8. X. Lian, T. Zhang, and Z. Liu, "A Novel Method on Moving-Objects Detection Based on Background Subtraction and Three Frames Differencing," in International Conference on Measuring Technology and Mechatronics Automation, vol. 1, pp.252-256, March 2010.
  9. H.-A. Mahdipour, K.-M. Hadi, and S. Y. Hadi, "Least Mean Square Algorithm Tuned by Fuzzy C-Means for Impulsive Noise Suppression of Gray-level Images," Int'l J. Sign. Proc. Img. Proc. Patt. Recogn., vol. 3, no. 4, pp. 55-66, Dec. 2010.
  10. Y. Ohta, T. Kanade, and T. Sakai, "A Study of Efficiency and Accuracy in the Transformation from RGB to CIE LAB Color Space," IEEE Trans. Image Proc., vol. 6, no. 7, pp. 1046 - 1048, July 1997. https://doi.org/10.1109/83.597279
  11. J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Springer, 1st edition, 2005.
  12. R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural Features for Image Classification," IEEE Trans. Systems, Man and Cybernetics, vol.3, no.6, pp.610-621, Nov. 1973. https://doi.org/10.1109/TSMC.1973.4309314
  13. S. Krishna, G. Indra, and G. Sangeeta, "SVM - BDT PNN and Fourier Moment Technique for Classification of Leaf Shape," Int'1. J. Sign. Proc. Img. Proc. Patt. Recogn., vol. 3, no. 4, pp. 67-78, Dec. 2010.
  14. T. H. Le and L. Bui, "Face Recognition Based on SVM and 2D PCA," Int'l. J. Sign. Proc. Img. Proc. Patt. Recogn., vol. 4, no. 3, pp. 85-94, Oct. 2011.