DOI QR코드

DOI QR Code

The Effects of Sodium Chloride on the Physiological Characteristics of Listeria monocytogenes

  • Choi, Kyoung-Hee (Department of Oral Microbiology, College of Dentistry, Wonkwang University) ;
  • Yoon, Yohan (Department of Food and Nutrition, Sookmyung Women's University)
  • Received : 2013.02.21
  • Accepted : 2013.06.24
  • Published : 2013.06.30

Abstract

Sodium chloride is used to improve various properties of processed meat products, e.g., taste, preservation, water binding capacity, texture, meat batter viscosity, safety, and flavor; however, many studies have shown that sodium chloride increases the resistance of many foodborne pathogens to heat and acid. Listeria monocytogenes has been isolated from various readyto- eat (RTE) meat and dairy products formulated with sodium chloride; therefore, the objective of this paper was to review the effects of sodium chloride on the physiological characteristics of L. monocytogenes. The exposure of L. monocytogenes to sodium chloride may increase biofilm formation on foods or food contact surfaces, virulence gene transcription, invasion of Caco-2 cells, and bacteriocin production, depending on L. monocytogenes strain and serotype as well as sodium chloride concentration. When L. monocytogenes cells were exposed to sodium chloride, their resistance to UV-C irradiation and freezing temperatures increased, but sodium chloride had no effect on their resistance to gamma irradiation. The morphological properties of L. monocytogenes, especially cell elongation and filament formation, also change in response to sodium chloride. These findings indicate that sodium chloride affects various physiological responses of L. monocytogenes and thus, the effect of sodium chloride on L. monocytogenes in RTE meat and dairy products needs to be considered with respect to food safety. Moreover, further studies of microbial risk assessment should be conducted to suggest an appropriate sodium chloride concentration in animal origin foods.

Keywords

References

  1. Abee, T. and Wouters, J. A. (1999) Microbial stress responses in minimal processing. Int. J. Food Microbiol. 50, 65-91. https://doi.org/10.1016/S0168-1605(99)00078-1
  2. Bae, D., Liu, C., Zhang, T., Jones, M., Peterson, S. N., and Wang, C. (2012) Global gene expression of Listeria monocytogenes to salt stress. J. Food Prot. 75, 906-912. https://doi.org/10.4315/0362-028X.JFP-11-282
  3. Ben Hammou, F., Skali, S. N., Idaomar, M., and J. Abrini. (2010) Combination of nisin with salt (NaCl) to control Listeria monocytogenes on sheep natural sausage casing stored at $6^{\circ}C$. Afr. J. Biotechnol. 9, 1190-1195.
  4. Bereksi, N., Gavini, F., Benezech, T., and Faille, C. (2002) Growth, morphology and surface properties of Listeria monocytogenes Scott A and LO28 under saline and acid environments. J. Appl. Microbiol. 92, 556-565. https://doi.org/10.1046/j.1365-2672.2002.01564.x
  5. Bernbom, N., Vogel, B. F., and Gram, L. (2011) Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation. Int. J. Food Micrbiol. 147, 69-73. https://doi.org/10.1016/j.ijfoodmicro.2011.03.009
  6. Bouttefroy, A., Mansour, M., Linder, M., and Milliere, J.-B. (2000) Inhibitory combinations of nisin, sodium chloride, and pH on Listeria monocytogenes ATCC15313 in broth by an experimental design approach. Int. J. Food Microbiol. 54, 109-115. https://doi.org/10.1016/S0168-1605(99)00171-3
  7. Boziaris, I. S., Skandamis, P. N., Anastasiadi, M., and Nychas, G.-J. E. (2007) Effect of NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes Scott A at different pH and nisin concentrations. J. Appl. Microbiol. 102, 796-805. https://doi.org/10.1111/j.1365-2672.2006.03117.x
  8. Breslin, P. A. and Beauchamp, G. K. (1997) Salt enhances flavour by suppressing bitterness. Nature 387, 563.
  9. Breuer, B. and Radler, F. (1996) Inducible resistance against nisin in Lactobacillus casei. Arch. Microbiol. 165, 114-118. https://doi.org/10.1007/s002030050305
  10. Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O. P., Sahl, H. G., and de Kruiff, B. B. (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286, 2361-2364. https://doi.org/10.1126/science.286.5448.2361
  11. Briggs, A. and Yazdany, S. (1970) Effect of sodium chloride on the heat and radiation resistance and on the recovery of heated or irradiated spores of the genus Bacillus. J. Appl. Microbiol. 33, 621-632. https://doi.org/10.1111/j.1365-2672.1970.tb02243.x
  12. Buncic, S., Avery, S. M., Rocourt, J., and Dimitrijevic. (2001) Can food-related environmental factors induce different behaviour in two key serovars, 4b and 1/2a, of Listeria monocytogenes? Int. J. Food Microbiol. 65, 201-212. https://doi.org/10.1016/S0168-1605(00)00524-9
  13. Caly, D., Takilt, D., Lebert, V., and Tresse, O. (2009) Sodium chloride affects Listeria monocytogenes adhesion to polystyrene and stainless steel by regulating flagella expression. Lett. Appl. Microbiol. 49, 751-756. https://doi.org/10.1111/j.1472-765X.2009.02735.x
  14. Chae, M. S. and Schraft, H. (2000) Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int. J. Food Microbiol. 62, 103-111. https://doi.org/10.1016/S0168-1605(00)00406-2
  15. Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M. N., and Hebraud, M. (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microb. 68, 728-737. https://doi.org/10.1128/AEM.68.2.728-737.2002
  16. Conlon, K. M., Humphreys, H., and O'Gara, J. P. (2002) icaR encodes a transcriptional repressor involved in environmental regulations of ica operon expression and biofilm formation in Staphylococcus epidermidis. J. Bacteriol. 184, 4400-4408. https://doi.org/10.1128/JB.184.16.4400-4408.2002
  17. Conte, M. P., Peptrone, G., Di Biase, A. M., Ammendolia, M. G., Superti, F., and Seganti, L. (2000) Acid tolerance in Listeria monocytogenes influences invasiveness of enterocyte-like cells and macrophage-like cells. Microb. Pathog. 29, 137-144. https://doi.org/10.1006/mpat.2000.0379
  18. Conte, M. P., Peptrone, G., Di Biase, A. M., Longhi, C., Penta, M., Tinari, A., Superti, F., Fabozzi, G., Visca, P., and Seganti, L. (2002) Effect of acid adaptation on the fate of Listeria monocytogenes in THP-1 human macrophages activated by gamma interferon. Infet. Immun. 70, 4369-4378. https://doi.org/10.1128/IAI.70.8.4369-4378.2002
  19. Corry, J. E. L. (1974) The effect of sugrs and polyols on the heat resistance of salmonellae. J. Appl. Bacteriol. 37, 31-43. https://doi.org/10.1111/j.1365-2672.1974.tb00412.x
  20. Cramton, S. E., Ulrich, M., Gotz, F., and Doring, G. (2001) Anaerobic conditions induce expression of polysaccharide interceullular adhesion in Staphylococcus aureus and Staphylococcus epidermidis. Inf. Immun. 69, 4079-4985. https://doi.org/10.1128/IAI.69.6.4079-4085.2001
  21. Crandall, A. D. and Montville, T. J. (1998) Nisin resistance in Listeria monocytogenes ATCC700302 is a complex phenotype. Appl. Environ. Microb. 64, 231-237.
  22. Delves-Broughton, J. (1990) Nisin and its uses as a food preservative. Food Technol. 44, 100-112.
  23. Djordjevic, D., Wiedmann, M., and McLandsborough, L. A. (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microb. 68, 2950-2958. https://doi.org/10.1128/AEM.68.6.2950-2958.2002
  24. Faleiro, M. L., Andrew, P. W., and Power, D. (2003) Stress response of Listeria monocytogenes isolated from cheese and other foods. Int. J. Food Microbiol. 84, 207-216. https://doi.org/10.1016/S0168-1605(02)00422-1
  25. Foegeding, P. M., Thomas, A. B., Pilkington, D. H., and Klaenhanmmer, T. R. (1992) Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Appl. Environ. Microb. 58, 884-890.
  26. Fretz, R., Sagel, U., Ruppitsch, W., Pietzka, A. T., Stoger, A., Huhulescu, S., Heuberger, S., Pichler, J., Much, P., Pfaff, G., Stark, K., Prager, R., Flieger, A., Feenstra, O., and Allerberger, F. (2010) Listeriosis outbreak caused by acid curd cheese 'Quargel', Austria and Germany 2009. Available at: http:// web.archive.org/web/20090207083151/http://www.phac-aspc. gc.ca/alert-alerte/listeria/listeria_2008-eng.php. Accessed on June 11, 2013.
  27. Garner, M. R., James, K. E., Callahan, M. C., Wiedmann, M., and Boor, K. J. (2006) Exposure to salt and organic acids increases the ability of Listeria monocytogenes to invade Caco-2 cells but decreases its ability to survive gastric stress. Appl. Environ. Microb. 72, 5384-5395. https://doi.org/10.1128/AEM.00764-06
  28. Gill, C. O., Badoni, M., and Jones, T. H. (2007) Behaviours of log phase cultures of eight strains of Escherichia coli incubated at temperatures of 2, 6, 8 and $10^{\circ}C$. Int. J. Food Microbiol. 119, 200-206. https://doi.org/10.1016/j.ijfoodmicro.2007.07.043
  29. Glass, K. A. and Doyle, M. P. (1989) Fate of Listeria monocytogenes in processed meat products during refrigerated storage. Appl. Environ. Microb. 55, 1565-1569.
  30. Grade, S. M., Avila, M., Medina, M., and Nunez, M. (2004) Fast induction of nisin resistance in Streptococcus thermophilus INIA 463 during growth in milk. Int. J. Food Microbiol. 96, 165-172. https://doi.org/10.1016/j.ijfoodmicro.2004.03.023
  31. Harris, L. J., Fleming, H. P., and Klaenhammer, T. R. (1991) Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A, and UAL500 to nisin. J. Food Prot. 54, 834-840.
  32. Hazeleger, W. C., Dalvoorde, M., and Beumer, R. R. (2006) Fluorescence microscopy of NaCl-stressed, elongated Salmonella and Listeria cells reveals the presence of septa in filaments. Int. J. Food Microbiol. 112, 288-290. https://doi.org/10.1016/j.ijfoodmicro.2006.04.026
  33. Hill, C., Cotter, P. D., Sleator, R. D., and Gahan, C. G. M. (2002) Bacterial stress response in Listeria monocytogenes: Jumping the hurdles imposed by minimal processing. Int. Dairy J. 12, 273-283. https://doi.org/10.1016/S0958-6946(01)00125-X
  34. Hornbaek, T., Brockhoff, P. B., Siegumfeldt, H., and Budde, B. B. (2006) Two subpopulations of Listeria monocytogenes occur at subinhibitory concentrations of leucocin 4010 and nisin. Appl. Environ. Microb. 72, 1631-1638. https://doi.org/10.1128/AEM.72.2.1631-1638.2006
  35. Isom, L. L., Khambatta, Z. S., Moluf, J. L., Akers, D. F., and Martin, S. E. (1995) Filament formation in Listeria monocytogenes. J. Food Prot. 58, 1031-1033.
  36. Jensen, A., Larsen, M. H., Ingmer, H., Vogel, B. F., and Gram, L. (2007) Sodium chloride enhances adherence and aggregation and strain variation influences invasiveness of Listeria monocytogenes strains. J. Food Prot. 70, 592-599.
  37. Jones, T., Gill, C. O., and McMullen, L. M. (2004) The behaviour of log phase Escherichia coli at temperatures that fluctuate about the minimum for growth. Lett. Appl. Microbiol. 39, 296-300. https://doi.org/10.1111/j.1472-765X.2004.01593.x
  38. Juneja, V. K., Altuntas, E. G., Ayhan, K., Hwang, C-A., Sheen, S., and Friedman, M. (2013) Predictive model for the reduction of heat resistance of Listeria monocytogenes in ground beef by the combined effect of sodium chloride and apple polyphenols. Int. J. Food Microbiol. 164, 54-59. https://doi.org/10.1016/j.ijfoodmicro.2013.03.008
  39. Kathariou, S. (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 65, 1811-1829.
  40. Kazmierczak, M. J., Mithoe, S. C., Boor, K. J., and Wiedmann, M. (2003) Listeria monocytogenes ${\sigma}^B$ regulates stress response and virulence functions. J. Bacteriol. 185, 5722-5734. https://doi.org/10.1128/JB.185.19.5722-5734.2003
  41. Kim, K. Y. and Frank, J. F. (1995) Effect of nutrients on biofilm formation by Listeria monocytogenes on stainless steel. J. Food Prot. 58, 24-28.
  42. Knobloch, J. K. M., Bartscht, K., Sabottke, A., Rohde, H., Feucht, H. H., and Mack, D. (2001) Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, and activator of the sigB operon: Differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183, 2624-2633. https://doi.org/10.1128/JB.183.8.2624-2633.2001
  43. Kumar, C. G. and Anand, S. K. (1998) Significance of microbial biofilms in the food industry: A review. Int. J. Food Microbiol. 42, 9-27. https://doi.org/10.1016/S0168-1605(98)00060-9
  44. Kuzhiyil, A., Lee, Y., Shim, A., and Xiong, A. (2012) Ostmotic stress induces kanamycin resistance in Escherichia coli B23 through increased capsule formation. J. Exp. Microbiol. Immun. 16, 5-10.
  45. Lado, B. H. and Yousef, A. E. (2007) Characterization of Listeria monocytogenes important to food processors. In: Listeria, listeriosis, and food safety. Ryser, E. T. and Marth, H (ed) CRC Press, Boca Raton, FL. USA.
  46. Lee, J. (2012) Effect of fat and sodium on resistance and invasion of Listeria monocytogenes. MS. Thesis, Sookmyung Women's Univ., Seoul, Korea.
  47. Leistner, L. and Russell, N. J. (1991). Solutes and low water activity. In: Food preservatives. Russell, N. J. and Gould, G. W. (eds.) Avi Publishing Company, Inc., New York, NY, pp. 111-134.
  48. Lianou, A., Stopforth, J. D., Yoon, Y., Wiedmann, M., and Sofos, J. N. (2006) Growth and stress resistance variation in culture broth among Listeria monocytogenes strains of various serotypes and origins. J. Food Prot. 69, 2640-2647.
  49. Mantovani, H. C. and Russell, J. B. (2001) Nisin resistance of Streptococcus bovis. Appl Environ Microb. 67, 808-813. https://doi.org/10.1128/AEM.67.2.808-813.2001
  50. Martinez, B., Bravo, D., and Rodriguez, A. (2005) Consequences of the development of nisin-resistant Listeria monocytogenes in fermented dairy products. J. Food Prot. 68, 2383-2388.
  51. Mattick, K. L., Jorgensen, F., Legan, D., Cole, M., Porter, J., Lappin-Scott, H. M., and Humphrey, T. J. (2000) The filamentation and survival of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium at low water activity. Appl. Environ. Microb. 66, 1274-1279. https://doi.org/10.1128/AEM.66.4.1274-1279.2000
  52. Mattick, K. L., Phillips, L. E., Jorgensen, F., Lappin-Scott, H. M., and Hymphrey, T. J. (2003) Filament formation by Salmonella spp. inoculated into liquid food matrices at refrigeration temperatures, and growth patterns when warmed. J. Food Prot. 66, 215-219.
  53. Mbandi, E. and Shelef, L. A. (2002) Enhanced antimicrobial effects of combination of lactate and diacetate on Listeria monocytogenes and Salmonella spp. in beef bologna. Int. J. Food Microbiol. 76, 191-198. https://doi.org/10.1016/S0168-1605(02)00026-0
  54. McClure, P. J., Roberts, T. A., and Oguru, P. O. (1989) Comparison of the effects of sodium chloride, pH and temperature on the growth of Listeria monocytogenes on gradient plates and in liquid medium. Lett. Appl. Microbiol. 9, 95-99. https://doi.org/10.1111/j.1472-765X.1989.tb00299.x
  55. McKinney, J., Williams, R. C., Boadman, G. D., Eifert, J. D., and Summer, S. S. (2009) Dose of UV light required to inactivate Listeria monocytogenes in distilled water, fresh brine, and spent brine. J. Food Prot. 72, 2144-2150.
  56. McLauchlin, J., Mitchell, R. T., Smerdon, W. J., and Jewell, K. (2004) Listeria monocytogenes and listeriosis: A review of hazard characterisation for use in microbiological risk assessment of foods. Int. J. Food Microbiol. 92, 15-33. https://doi.org/10.1016/S0168-1605(03)00326-X
  57. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., and Shapiro, C. (1999) Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607-625. https://doi.org/10.3201/eid0505.990502
  58. Mendonca, A. F., Romero, M. G., Lihono, M. A., Nannapaneni, R., and Johnson, M. G. (2004) Radiation resistance and virulence of Listeria monocytogenes Scott A following starvation in physiological saline. J. Food Prot. 67, 470-474.
  59. Mendum, M. L. and Smith, L. T. (2002) Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance. Appl. Environ. Microb. 68, 813-819. https://doi.org/10.1128/AEM.68.2.813-819.2002
  60. Meng, J. and Doyle, M. P. (1998) Emerging and evolving microbial foodborne pathogens. Bull. Inst. Pasteur. 96, 15-33. https://doi.org/10.1016/S0020-2452(98)80025-0
  61. Muriana, P. M. (1996) Bacteriocins for control of Listeria spp. in food. J. Food Prot. Supp, 54-63.
  62. Myers, E. R., Dallmier, A. W., and Martin, S. E. (1993) Sodium chloride, potassium chloride, and virulence in Listeria monocytogenes. Appl. Environ. Microb. 59, 2082-2086.
  63. Nadon, C., Bowen, B. M., Wiedmann, M., and Boor, K. J. (2002) ${\sigma}^B$ contributes to Prf-mediated virulence in Listeria monocytogenes. Infect. Immun. 70, 3948-3952. https://doi.org/10.1128/IAI.70.7.3948-3952.2002
  64. Navarre, W. W. and Schneewind, O. (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63, 174-229.
  65. Norwood, D. E. and Gilmour, A. (2001) The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as a function of temperature. Lett. Appl. Micrbiol. 33, 320-324. https://doi.org/10.1046/j.1472-765X.2001.01004.x
  66. Notermans, S., Dufrenne, J., Teunis, P., and Chackraborty. (1998) Studies on the risk assessment of Listeria monocytogenes. J. Food Prot. 61, 244-248.
  67. Olesen, I., Thorsen, L., and Jespersen, L. (2010) Relative transcription of Listeria monocytogenes virulence genes in liver pates with varying NaCl content. Int. J. Food Microbiol. 141, S60-S68. https://doi.org/10.1016/j.ijfoodmicro.2010.01.042
  68. Olesen, I., Vogensen, F. K., and Jespersen, L. (2009) Gene transcription and virulence potential of Listeria monocytogenes strains after exposure to acidic and NaCl stress. Foodborne Path. Dis. 6, 669-680. https://doi.org/10.1089/fpd.2008.0243
  69. Pan, Y., Breidt, Jr., F., and Gorski, L. (2010) Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes serotype 1/2a and 4b strains. Appl. Environ. Microb. 76, 1433-1441. https://doi.org/10.1128/AEM.02185-09
  70. Pawar, D. D., Malik, S. V. S., Bhilegaonkar, K. N., and Barbuddhe, S. B. (2000) Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat. Sci. 56, 215-219. https://doi.org/10.1016/S0309-1740(00)00043-7
  71. PHAC (Public Health Agency of Canada) (2008) Listeria monocytogenes outbreak. Availale at: http://web.archive.org/ web/20090207083151/http://www.phac-aspc.gc.ca/alert-alerte/ listeria/listeria_2008-eng.php. Accessed on June 11, 2013.
  72. Recourt, J., Jacquet, C., and Reilly, A. (2000) Epidemiology of human listeriosis and seafoods. Int. J. Food Microbiol. 62, 197-209. https://doi.org/10.1016/S0168-1605(00)00336-6
  73. Ryan, S., Hill, C., and Gahan, C. G. M. (2008) Acid stress response in Listeria monocytogenes. Adv. Appl. Microbiol. 65, 67-91. https://doi.org/10.1016/S0065-2164(08)00603-5
  74. Rychlik, I. and Barrow, P. A. (2005) Salmonella stress management and its relevance to behaviour during intestinal colonization and infection. FEMS Microbiol. Rev. 29, 1021-1040. https://doi.org/10.1016/j.femsre.2005.03.005
  75. Samelis, J., Ikeda, J. S., and Sofos, J. N. (2003) Evaluation of the pH-dependent, stationary phases acid resistance of Listeria monocytogenes and Salmonella Typhimurium DT104 induced by culturing in media with 1% glucose: A comparative study with Escherichia coli O157:H7. J. Appl. Microbiol. 95, 563-575. https://doi.org/10.1046/j.1365-2672.2003.02013.x
  76. Sammarco, M. L., Ripabelli, G., Ruberto, A., Iannitto, G., and Grasso, G. M. (1997) Prevalence of Salmonellae, Listeriae, and Yersiniae in the slaughterhouse environment and on work surfaces, equipment, and workers. J. Food Prot. 60, 367-371.
  77. Shadbolt, C., Ross, T., and McMeekin, T. A. (2001) Differentiation of the effects of lethal pH and water activity: Food safety implications. Lett. Appl. Microbiol. 32, 99-102. https://doi.org/10.1046/j.1472-765x.2001.00862.x
  78. Skandamis, P. N., Stopforth, J. D., Yoon, Y., Kendall, P. A., and Sofos, J. N. (2009) Heat and acid tolerance responses of Listeria monocytogenes as affected by sequential exposure to hurdles during growth. J. Food Prot. 72, 1412-1418.
  79. Skandamis, P. N., Yoon, Y., Stopforth, J. D., Kendall, P. A., and Sofos, J. N. (2008) Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses. Food Microbiol. 25, 294-303. https://doi.org/10.1016/j.fm.2007.10.008
  80. Sofos, J. N. (1993) Current microbiological considerations in food preservation. Int. J. Food Microbiol. 19, 87-108. https://doi.org/10.1016/0168-1605(93)90176-H
  81. Tarver, T. (2009) Biofilms a threat to food safety. Food Technol. 63, 46-52.
  82. Vasseur, C., Baverel, L., Herbraud, M., and Labadie, J. (1999) Effect of osmotic alkaline, acid or thermal stresses on the growth and inhibition of Listeria monocytogenes. J. Appl. Microbiol. 86, 469-476. https://doi.org/10.1046/j.1365-2672.1999.00686.x
  83. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakaraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J., and Kreft, J. (2001) Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584-640. https://doi.org/10.1128/CMR.14.3.584-640.2001
  84. Vogel, B. F., Hansen, L. T., Mordhorst, H., and Gram, L. (2010) The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material. Int. J. Food Microbiol. 140, 192-200. https://doi.org/10.1016/j.ijfoodmicro.2010.03.035
  85. Weis, J. and Seeliger, H. P. R. (1975) Incidence of Listeria monocytogenes in nature. Appl. Microbiol. 30, 29-32.
  86. Welshimer, H. J. and Donker-Voet, J. (1971) Listeria monocytogenes in nature. Appl. Microbiol. 21, 516-519.
  87. Wong, E., Linton, R. H., and Gerrard, D. E. (1998) Reduction of Escherichia coli and Salmonella Senftenberg on pork skin and pork muscle using ultraviolet light. Food Microbiol. 15, 415-423. https://doi.org/10.1006/fmic.1998.0185
  88. Wulff, G., Gram, L., Ahrens, P., and Vogel, B. F. (2006) One group of genetically similar Listeria monocytogenes strains frequently dominate and persist in several fish slaughter and smokehouses. Appl. Environ. Microb. 72, 4313-4322. https://doi.org/10.1128/AEM.02288-05
  89. Yoon, Y., Kim, G., Nam, M., Shim, W.-B., Seo, E., Kim, J.- H., Lee, J.-W., Byun, M.-W., and Chung, D.-H. (2009) Effect of glucose on Listeria monocytogenes survival under sequential sublethal stresses of gamma irradiation and NaCl. Food Sci. Biotechnol. 18, 162-166.
  90. Yoon, Y. and Sofos, J. N. (2008) Autoinducer-2 activity of gramnegative foodborne pathogenic bacteria and its influence on biofilm formation. J. Food Sci. 73, M140-M147. https://doi.org/10.1111/j.1750-3841.2008.00697.x
  91. Yousef, A. E. and Marth, E. H. (1988) Inactivation of Listeria monocytogenes by ultraviolet energy. J. Food Sci. 53, 571-573. https://doi.org/10.1111/j.1365-2621.1988.tb07759.x
  92. Zaika, L. L. and Fanelli, J. S. (2003) Growth kinetics and cell morphology of Listeria monocytogenes Scott A as affected by temperature, NaCl, and EDTA. J. Food Prot. 66, 1208-1215.
  93. Zarei, M., Khezizadeh, M., Kazemipour, S., Hesami, G., and Bemani, E. (2012) Growth and cell morphology of Listeria monocytogenes as affected by various concentrations of NaCl and KCl. J. Appl. Biol. Sci. 6, 55-58.

Cited by

  1. Predictive Models to Describe Behavior ofStaphylococcus aureusin Sweet Pumpkin Salad Under Constant and Dynamic Temperature vol.34, pp.3, 2014, https://doi.org/10.1111/jfs.12121
  2. NaCl Influences Thermal Resistance and Cell Morphology ofEscherichia coliStrains vol.36, pp.1, 2016, https://doi.org/10.1111/jfs.12213
  3. Optimization of Processing Conditions of Chinese Smoke-cured Bacon (Larou) with a New Natural Coating Solution during Storage Period vol.38, pp.3, 2013, https://doi.org/10.5851/kosfa.2018.38.3.636