References
- R. P. Agarwal and D. O'Regan, Singular Differential and Integral Equations with Ap-plications, Kluwer Academic Publishers, Dordrecht, 2003.
- R. P. Agarwal and D. O'Regan, Singular boundary value problems for superlinear second order ordinary and delay differential equations, J. Differential Equations 130 (1996), no. 2, 333-355. https://doi.org/10.1006/jdeq.1996.0147
- R. P. Agarwal and D. O'Regan, Existence theory for single and multiple solutions to singular positone boundary value problems, J. Differential Equations 175 (2001), no. 2, 393-414. https://doi.org/10.1006/jdeq.2001.3975
- R. P. Agarwal and D. O'Regan, Existence criteria for singular boundary value problems with sign changing nonlinearities, J. Differential Equations 183 (2002), no. 2, 409-433. https://doi.org/10.1006/jdeq.2001.4127
- R. P. Agarwal, K. Perera, and D. O'Regan, Multiple positive solutions of singular problems by variational methods, Proc. Amer. Math. Soc. 134 (2006), no. 3, 817-824. https://doi.org/10.1090/S0002-9939-05-07992-X
- R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, 8, Oxford, 1975.
- J. V. Baxley, A singular nonlinear boundary value problem: membrane response of a spherical cap, SIAM J. Appl. Math. 48 (1988), no. 3, 497-505. https://doi.org/10.1137/0148028
- G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), Article ID 670675, 20 pages.
- G. Bonanno and B. Di Bella, Infinitely many solutions for a fourth-order elastic beam equation, Nonlinear Differential Equations Appl. 18 (2011), no. 3, 357-368. https://doi.org/10.1007/s00030-011-0099-0
- A. Callegari and A. Nachman, Some singular nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978), no. 1, 96-105. https://doi.org/10.1016/0022-247X(78)90022-7
- J. Chu and D. O'Regan, Multiplicity results for second order non-autonomous singular Dirichlet systems, Acta Appl. Math. 105 (2009), no. 3, 323-338. https://doi.org/10.1007/s10440-008-9277-4
- J. A . Cid, O. L. Pouso, and R. L. Pouso, Existence of infinitely many solutions for second-order singular initial value problems with an application to nonlinear massive gravity, Nonlinear Anal. Real World Appl. 12 (2011), no. 5, 2596-2606. https://doi.org/10.1016/j.nonrwa.2010.09.030
- L. Erbe and R. Mathsen, Positive solutions for singular nonlinear boundary value problems, Nonlinear Anal. 46 (2001), no. 7, 979-986. https://doi.org/10.1016/S0362-546X(00)00147-4
- P. Habets and F. Zanolin, Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181 (1994), no. 3, 684-700. https://doi.org/10.1006/jmaa.1994.1052
-
X. He and W. Zou, Infinitely many solutions for a singular elliptic equation involving critical sobolev-Hardy exponents in
$\mathbb{R}^n$ , Acta Math. Sci. Ser. B Engl. Ed. 30 (2010), no. 3, 830-840. - K. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc. (2) 63 (2001), no. 3, 690-704. https://doi.org/10.1112/S002461070100206X
- K. Lan and J. R. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations 148 (1998), no. 2, 407-421. https://doi.org/10.1006/jdeq.1998.3475
- J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.
- A. Nachman and A. Callegari, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), no. 2, 275-282. https://doi.org/10.1137/0138024
- S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal. 3 (1979), no. 6, 897-904. https://doi.org/10.1016/0362-546X(79)90057-9
- E. Zeidler, Nonlinear Functional Analysis and its Applications. III, Springer-Verlag, 1985.
Cited by
- Lower and upper functions in a singular Dirichlet problem with ø-Laplacian vol.97, pp.3-4, 2015, https://doi.org/10.1134/S0001434615030293