References
- J. S. Arora, Introduction to Optimum Design, McGraw-Hill Book Co., New York, 19-th edition, 1989.
- G. J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Statist. Comput. 2 (1981), no. 2, 164-175. https://doi.org/10.1137/0902014
-
G. J. Davis, Algorithm 598: An algorithm to compute solvents of the matrix equation
$AX^{2}$ + BX + C = 0, ACM Trans. Math. Software 9 (1983), no. 2, 246-254. https://doi.org/10.1145/357456.357463 - C.-H. Guo and A. J. Laub, On the iterative solution of a class of nonsymmetric algebraic equations, SIAM J. Matrix Anal. Appl. 22 (2000), no. 2, 376-391. https://doi.org/10.1137/S089547989834980X
- N. J. Higham and H.-M. Kim, Numerical analysis of a quadratic matrix equation, IMA J. Numer. Anal. 20 (2000), no. 4, 499-519. https://doi.org/10.1093/imanum/20.4.499
- N. J. Higham and H.-M. Kim, Solving a quadratic matrix equation by Newton's method with exact line searches, SIAM J. Matrix Anal. Appl. 23 (2001), no. 2, 303-316. https://doi.org/10.1137/S0895479899350976
- H.-M. Kim, Convergence of Newton's method for solving a class of quadratic matrix equations, Honam Math. J. 30 (2008), no. 2, 399-409. https://doi.org/10.5831/HMJ.2008.30.2.399
- W. Kratz and E. Stickel, Numerical solution of matrix polynomial equations by Newton's method, IMA J. Numer. Anal. 7 (1987), no. 3, 355-369. https://doi.org/10.1093/imanum/7.3.355
- G. M. Phillips and P. J. Taylor, Theory and Applications of Numerical Analysis, Academic Press. 2nd edition, London, 1996.
- D. X. Xie, L. Zhang, and X. Y. Hu, The solvability conditions for the inverse problem of bisymmetric nonnegative definite matrices, J. Comput. Math. 6 (2000), no. 6, 597-608.
-
X. Y. Peng, X. Y. Hu, and L. Zhang, The bisymmetric solutions of the matrix equation
$A_1X_1B_1+A_1X_1B_1+{\cdot}{\cdot}{\cdot}+A_lX_lB_l=C$ and its optimal approximation, Linear Algebra Appl. 426 (2007), no. 2-3, 583-595. https://doi.org/10.1016/j.laa.2007.05.034 - L. Zhao, X. Hu and L. Zhang, Least square solutions to AX = B for bisymmetric matrices under a central principal submatrix constrain and the optimal approximation, Linear Algebra Appl. 428 (2008), no. 4, 871-880. https://doi.org/10.1016/j.laa.2007.08.019
Cited by
- Diagonal update method for a quadratic matrix equation vol.283, 2016, https://doi.org/10.1016/j.amc.2016.02.016