DOI QR코드

DOI QR Code

Study on Behavior of Slender Bodies in Waves

세장체의 파랑중 거동에 대한 실험에 관한 고찰

  • Lee, Seung Jae (Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime University) ;
  • Kang, Donghoon (Department of Naval Architecture and Ocean Engineering, Gyeongsang National University) ;
  • Jo, Hyo Jae (Division of Naval Architecture and Ocean Systems Engineering, Korea Maritime University) ;
  • Shin, Da Rae (ZENTECH Engineering)
  • 이승재 (한국해양대학교 조선해양시스템공학부) ;
  • 강동훈 (경상대학교 조선해양공학과) ;
  • 조효제 (한국해양대학교 조선해양시스템공학부) ;
  • 신다래 ((주)젠텍엔지니어링)
  • Received : 2013.03.19
  • Accepted : 2013.05.09
  • Published : 2013.06.30

Abstract

The exploration areas for maritime resources such as oil and natural gas have gradually moved to deep sea areas. It has become difficult to use existing fixed marine structures, which are very costly to build, because that have reached the uppermost economic limit. Therefore, floating marine structures and flexible marine structures are preferred. In particular, slender bodies such as risers and pipes are important parts of ocean depth marine structures. These slender bodies have more flexible structural characteristics in deep water areas because their overall length becomes longer and thediameter/length slenderness ratio gets smaller. In addition, the dynamic behavior of slender bodies becomes complicated as external forces such as tides and waves act on it directly. In this study, in order to solve these problems, we performed model tests in a 2-D wave basin using flexible slender bodies with different modulus of elasticity values. As a result, we compiled statistics and compared the behaviors of flexible slender bodies with respect to the effect of the modulus of elasticity. We expect that the results could be used as reference data for the design of structures with flexible elements.

Keywords

References

  1. Burke, B., 1974. An Analysis of Marine Risers for Deep Water, Offshore Technology Conference, Journal of Petroleum Technology, 26(4), 455-465.
  2. Chena, Y., Chaib, Y.H., Lia, X., Zhoua, J., 2009. An Extraction of the Natural Frequencies and Mode Shapes of Marine Risers by the Method of Differential Transformation. Computers and Structures. 87(21-22), 1384-1393. https://doi.org/10.1016/j.compstruc.2009.07.003
  3. Chucheepsakkul, S., Huang, T., Laohapotjanart, P., 1995. Effect of Axial Deformation on the Equilibrium Configurations of Marine Cable. Proc. of the 5th International Offshore and Polar Engineering Conference, 2, 224-248.
  4. Hong, Y.P., Nakamura, M., Koterayama, W., 2002. An Experimental and Numerical Study on Dynamics of Flexible Free Hanging Riser. Proceedings of The Fifth ISOPE Paci fic/Asia Offshore Mechanics Symposium, 131-140.
  5. Huang, T., 1992. A Static Equilibrium Formulation including Axial Deformation for Marine Cables. Proceeding of International Offshore and Polar Engineering Conference, 2, 252-255.

Cited by

  1. Investigation of Characteristics of Waves Generated in Two-Dimensional Wave Channel vol.27, pp.4, 2013, https://doi.org/10.5574/KSOE.2013.27.4.068
  2. Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current vol.30, pp.2, 2016, https://doi.org/10.5574/KSOE.2016.30.2.091