DOI QR코드

DOI QR Code

Development and Validation of Predictive Models of Esherichia coli O157:H7 Growth in Paprika

파프리카에서 병원성 대장균의 성장예측 모델 개발 및 검증

  • Yun, Hyejeong (Microbial Safety Team, National Academy of Agricultural Science, RDA) ;
  • Kim, Juhui (Microbial Safety Team, National Academy of Agricultural Science, RDA) ;
  • Park, Kyeonghun (Microbial Safety Team, National Academy of Agricultural Science, RDA) ;
  • Ryu, Kyoung-Yul (Microbial Safety Team, National Academy of Agricultural Science, RDA) ;
  • Kim, Byung Seok (Microbial Safety Team, National Academy of Agricultural Science, RDA)
  • 윤혜정 (농촌진흥청 국립농업과학원 유해생물팀) ;
  • 김주희 (농촌진흥청 국립농업과학원 유해생물팀) ;
  • 박경훈 (농촌진흥청 국립농업과학원 유해생물팀) ;
  • 류경열 (농촌진흥청 국립농업과학원 유해생물팀) ;
  • 김병석 (농촌진흥청 국립농업과학원 유해생물팀)
  • Received : 2012.05.22
  • Accepted : 2013.05.27
  • Published : 2013.06.30

Abstract

This study was carried out to develop and validate predictive models of E. coli O157:H7 growth. Growth data of E. coli O157:H7 in Paprika were collected at 12, 24, 30 and $36^{\circ}C$. The population increased into 3.0 to 3.8 log10 CFU/g within 4 days, then continued to increase at a slower rate through 10 days of storage at $12^{\circ}C$. The lag time (LT) and maximum specific growth rate (SGR) obtained from each primary model was then modeled as a function of temperature using Davey and square root equations, respectively. For interpolation of performance evaluation, growth data for a mixture of E. coli O157:H7 were collected at time intervals in paprika incubated at the different temperatures, which was not used in model development. Results of model performance for interpolation data demonstrated that induced secondary models showed acceptable goodness of fit. Relative errors in the LT and SGR model for interpolation data (18 and $27^{\circ}C$) was 100%, which show acceptable goodness of fit and validated for interpolation. The primary and secondary models developed in this study can be used to establish tertiary models to quantify the effects of temperature on the growth of E. coli O157:H7 in paprika.

본 연구는 신선편이 식품에서 오염 가능성이 있는 병원성 식중독 균 E. coli O157:H7에 대해 파프리카에서 성장 예측 모델을 적용하고, 본 연구에서 개발된 성장 예측 모델을 내부 검증하였다. 이를 비교하여 신선편이 식품을 안전하게 관리하기 위한 적절한 모델을 제시하고자 하였다. 파프리카에 E. coli O157:H7접종하여 온도에 따라 12, 24, 30, $36^{\circ}C$에 보관하여 성장을 측정하였다. Gompertz 식을 이용하여 온도에 따른 성장곡선을 그리고 LT와 SGR을 산출하였다. 산출된 LT와 SGR은 각각 Davey model와 squareroot model를 이용하여 2차 모델을 개발하였다. 개발된 2차 모델에 대하여 LT와 SGR model의 $R^2$값은 각각 0.999, 0.994로 1에 근접하는 높은 적합성을 보였다. 또한 내부 검정 결과 LT와 SGR model의 Bf 값은 각각 1.01, 0.89, LT model은 안전하게 SGR model 위험하게 예측되었다. 파프리카의 LT와 SGR의 상대적인 오차 값은 모두 허용 가능한 오차 범위에 포함 되었다. 따라서 개발된 모델을 이용하여 온도에 따른 E. coli O157:H7성장을 추정할 수 있으며, 이를 위해평가 자료로 활용할 수 있을 것으로 보인다.

Keywords

References

  1. FDA: Guidance for industry, Guide to minimize microbial food safety hazard for fresh fruits and vegetables. Available from: http://csan.fda.gov. Accessed Apr. 10, (2005).
  2. Burnett, S.L. and Beuchat, L.R.: Human pathogens associated with raw produce and unpasteurized juices and difficulties in decontaanination. J. Int. Microbiol. 27, 104-110 (2001).
  3. 구민성, 김현정: 병원성 대장균과 식중독-시가독소 생산성 대장균을 중심으로. Safe food 6, 23-24 (2011).
  4. 조명숙, 이진수, 홍진숙: 파프리카를 첨가한 설기떡의 품질특성. 한국식품조리과학회지, 24, 333-339 (2002).
  5. 유용만, 윤용남, Quan Juan Hua, 차광호, 이영하: 유통중인 파프리카, 딸기 및 토마토의 생물학적 위해요소 분포 조사, 한국식품위생안전성학회지, 24, 174-181 (2009).
  6. 정승혜, 허명재, 주정화, 김경애, 오성숙, 고종명, 김용희, 임정수: 비가열 섭취 채소류의 미생물 오염도 조사, 한국식품위생안전성학회지, 21, 250-257 (2006).
  7. 식품위약품안전청, 식중독발생동향 (2011).
  8. Choi, H.S., Cho, M.C., Noh, S., Kim, M.N. and Kim, K.M.: Case of Verotoxin-producing Escherichia coli O157:H7 with Hemorrhagic Colitis in an infant, Diagnosed by multiplex PCR, Korean J. Clin. Microbiol. 13, 85-89 (2010). https://doi.org/10.5145/KJCM.2010.13.2.85
  9. Nataro, J. P. and Kaper, J. B.: Diarrheagenic Escherichia coli. Clinical Microbiol. Rev. 11, 132-201 (1998)
  10. Koseki, S. and Isobe, S.: Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. J. Microbiol. 119, 300-307 (2007).
  11. Bemarah, N., Sanaa, M., Cassin, M.H., Griffiths, M.W. and Cerf, O,: Quantitative risk assessment of humam listeriosis from consumption of soft cheese made from raw milk. Prev. Vet. Med. 37, 129-145 (1998). https://doi.org/10.1016/S0167-5877(98)00112-3
  12. Whiting, R.C.: Microbial modeling in foods. Critical Rev. Food Sci. Nutr. 35, 467-494 (1995). https://doi.org/10.1080/10408399509527711
  13. Yang, S.E., Yu, R.C. and Chou, C.C.: Influence of holding temperature on the growth and survival of Salmonella spp. and Staphylococcus aureus and the production of staphylococcus enterotoxin in egg products. Int. J. food Microbiol. 63, 99-107 (2001). https://doi.org/10.1016/S0168-1605(00)00416-5
  14. Buchanan, R.L., Bagi, L.K., Goins, R.V. and Phillips, J.G.: Response surface models for the growth kinetics of Escherichia coli O157:H7. Food Microbiol. 10, 303-315 (1993). https://doi.org/10.1006/fmic.1993.1035
  15. Baranyi, T., Robinson, T.P., Kaloti, A. and Mackey, B.M.: Predicting growth of Brochothrix thermosphacta at changing temperature. Int. J. Food microbial. 27, 61-75 (1995). https://doi.org/10.1016/0168-1605(94)00154-X
  16. Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N. and Chandler, R.E.: Model for bacterial culture growth rate through the entire biokinetic temperature range. J. Bacteriol. 154, 1222-1226 (1983).
  17. Duffy, L.L., Vanderline, P.B. and Grau, F.H.: Growth of Listeria monocytogens on vaccum-packed cooked meats: effects of pH, Aw, nitrite and sodium ascorbate. Int. J. Food microbiol. 23, 377-390 (1994). https://doi.org/10.1016/0168-1605(94)90164-3
  18. Ross, R.: Predictive food microbiology models in the meat industry. Meat and Livestock Australia, Sydney, Australia, p. 196 (1999).
  19. Ross, T: Indices for performance evaluation of predictive model in food microbiology. J. Appl. Bacteriol. 81, 201-508 (1996). https://doi.org/10.1111/j.1365-2672.1996.tb04501.x
  20. Delignette-Muller, M.L., Rosso, L., Flandrois, J.P.: Accuracy of microbial growth predictions with square root and polynomial models. Int. J. Food Microbiol. 27, 139-146 (1995). https://doi.org/10.1016/0168-1605(94)00158-3
  21. Oscar, T.P.: Validation of Lag Time and Growth Rate Models for Salmonella Typhimurium: Acceptable Prediction Zone Method. J. Food Sci. 70, 129-137 (2005). https://doi.org/10.1111/j.1365-2621.2005.tb07103.x
  22. Kim, E.J.: Analysis of microbiological hazards and quantitative microbial risk assessment of staphylococcus aureus inoculated onto potentially hazardous foods in school service operations. MS thesis, Yonsei Univ., Seoul, Korea (2004).
  23. Mark L.T., Greg Paolib, B.S. and Marmera, J.P.: Models of the behavior of Escherichia coli O157:H7 in raw sterile groundbeef stored at 5 to $46^{\circ}C$. Int. J. Food Microbiol. 100, 335-344 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.10.029
  24. Khalil, R.K. and Frank, J.F.: Behavior of Escherichia coli O157:H7 on damaged leaves of spinach, lettuce, cilantro, and parsley stored at abusive temperatures. J. Food Prot. 73, 212-220 (2010). https://doi.org/10.4315/0362-028X-73.2.212
  25. Oliveira, M., Usall, J., Solsona, C., Alegre, I., Vi as, I. and Abadias, M.: Effects of packaging type and storage temperature on the growth of foodborne pathogens on shredded 'Romaine' lettuce. Food Microbiol. 27, 375-380 (2010). https://doi.org/10.1016/j.fm.2009.11.014
  26. Strawn, L.K. and Danyluk, M.D.: Fate of Escherichia coli O157:H7 and Salmonella spp. on fresh and frozen cut mangoes and papayas. Food Microbiol. 138, 78-84 (2010) https://doi.org/10.1016/j.ijfoodmicro.2009.12.002
  27. Sutherland, J.P., Bayliss, A.J., Braxton, D.S.: Predictive modelling of growth of Escherichia coli O157:H7: the effects of temperature, pH and sodium chloride. Int. J. Food Microbiol. 25, 29-49 (1995). https://doi.org/10.1016/0168-1605(94)00082-H