DOI QR코드

DOI QR Code

Protective Effect of Functional Perilla frutescens Hot-water Extract Against tert-butyl hydroperoxide-Induced Liver Oxidative Damage in Rats

랫드에서의 t-BHP 유발 산화스트레스에 대한 기능성 들깻잎 열수 추출물의 간 보호 효과

  • Yang, Sung-Yong (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kang, Jeong-Han (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Kwang-Won (Division of Food Bioscience & Technology, College of Life Sciences and Biotechnology, Korea University)
  • 양성용 (고려대학교 생명과학대학 식품공학부) ;
  • 강정한 (고려대학교 생명과학대학 식품공학부) ;
  • 이광원 (고려대학교 생명과학대학 식품공학부)
  • Received : 2012.10.31
  • Accepted : 2013.05.08
  • Published : 2013.06.30

Abstract

Perilla frutescens usually dieted in East Asian country such as Korea and Japan. Antioxidant, antiinflammatory and anticancer activities of perilla leaves have been founded. In previous study, we confirmed that caffeic acid, major compound of perilla, was accumulation by sucrose aqueous solution and thus antioxidant effect of perilla was enhanced. In this study, we investigated the protective effect of functional perilla leaves extract (PLE) against tert-butyl hydroperoxide(t-BHP) induced-oxidative hepatotoxicity. The pretreatment with PLE (250, 500 and 1000 mg/kg b.w.) for 5 days before a single dose of t-BHP (i.p.; 0.5 mmol/kg) significantly lowered the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase dose-dependently. And we confirmed that the indicators of oxidative stress were remarkably reduced in the liver, such as the glutathione contents and malondialdehyde, marker of lipid peroxidation. Pathological histology of the rat livers tissues showed that PLE reduced the hepatocyte degeneration and neutrophilic infiltration of liver induced by t-BHP. These results suggest that functional perilla frutescens has the protective effect of liver against t-BHP-induced oxidative hepatic stress in rats.

t-BHP는 대표적인 산화스트레스에 의한 간 손상 모델이며, 본 연구자는 랫드에 기능성이 강화된 기능성 들깻잎 추출물(P. frutescens leaf extract, PLE)을 250, 500 또는 1000 mg/kg body weight (b.w.)으로 6일간 경구 투여하고 t-BHP의 복강 주사로 간 손상을 일으킨 후 기능성 들깻잎 추출물이 간에서 산화스트레스를 얼마나 억제하여 주는지를 혈액의 간 손상 지표인 lactate dehydrogenase (LDH), aspartate aminotransferase (AST) 그리고 alanine aminotransferase (ALT)를 측정하였으며, 간 조직에서 항산화 바이오 마커인 reduced glutathione (GSH), 지질과산화물의 척도인 malondialdehyde (MDA)를 통해서 측정하였다. 산화스트레스에 의한 간 손상시 GSH는 아무것도 처리하지 않은 정상 대조군($146.0{\pm}5.4$ mM GSH/g protein)에 비해 t-BHP로 산화스트레스를 유발한 그룹에서 $128.6{\pm}6.8$ mM GSH/g protein로 감소하였다. 반면 기능성 들깻잎 추출물을 250, 500 그리고 1000 mg/kg b.w. 을 투여한 그룹에서는 $129.3{\pm}2.6$ mM GSH/g protein, $151.9{\pm}6.8$ mM GSH/g protein, $171.9{\pm}5.2$ mM GSH/g protein로 농도 의존적으로 GSH 함량이 회복되는 경향을 나타내며, 500 mg/kg b.w. 투여군부터 정상 대조군의 GSH 함량과 비슷한 수준을 나타내었다. 또한, 간 조직에서 산화스트레스에 의하여 발생된 지질과산화물을 측정하였을 때 t-BHP에 의하여 산화스트레스만 유발한 그룹은 $834.0{\pm}154.7{\mu}M/g$ protein 로 정상 대조군의 $385.6{\pm}39.7{\mu}M/g$ protein 보다 2.17배 높은 MDA를 생성한 것으로 지질과산화가 많이 일어난 것을 확인하였으나, 기능성 들깻잎 추출물을 투여한 그룹의 MDA의 생성량은 $669.2{\pm}145.0$, $595.1{\pm}142.6$, $415.9{\pm}133.8{\mu}M/g$ protein 로 농도에 따라 감소하는 경향을 확인하였다. 랫드의 간 조직에서, 독성을 유발하는 t-BHP를 복강 투여 후 기능성 들깻잎 추출물을 경구 투여하였을 때 지질과산화의 지표인 MDA의 감소와 항산화의 지표인 GSH 함량이 증가하였다. 조직병리학적 확인을 위하여 간 조직을 H&E 염색 후 광학현미경으로 관찰하였을 때, t-BHP만 처리한 음성 대조군의 경우 간 세포의 괴사와 조직의 변형을 확인할 수 있었지만 기능성 들깻잎 추출물을 처리하였을 경우 모두 정상 상태의 조직을 관찰할 수 있었다. 위의 결과들을 종합하였을 때, t-BHP가 간에서 산화스트레스를 유발하여 간 손상을 야기시키고, 간 조직의 인지질 막 손상을 줄 수 있으며, 기능성 들깻잎 추출물은 간 손상에 대한 보호 효과가 있음을 확인하였다.

Keywords

References

  1. Lee, J.I., Han, E.D., See, S.T. and Park, H.W.: Study on the evaluation of oil quality and the differences of fatty acid composition between varieties in perilla (perilla frutescens Britton bar. japonica Hara.). Korean J. Breed, 18, 228-233 (1986).
  2. Hyun, K.W., Kim, J.H., Song, K.J., Lee, J.B., Jang, J.H., Kim, Y.S. and Lee, J.S.: Physioloical functionality in heumsan Perilla leaves from green house and field cultivation. Korean J. Food. Sci. Food Sci. Nutr, 35, 975-979 (2003).
  3. Kim, M.K., Lee, H.S., Kim, E.J.. Won, N.H., Chi, Y.M., Kim, B.C. and Lee, K.W.: Protective effect of aqueous extract of Perilla frutescens on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in rats. Food Chem. Toxicol, 45(9), 1738-1744 (2007). https://doi.org/10.1016/j.fct.2007.03.009
  4. Park, H.Y., Nam, M.H., Lee, H.S., Jun, W., Hendrich, S. and Lee, K.W.: Isolation of caffeic acid from Perilla frutescens and its role in enhancing gamma-glutamylcysteine synthetase activity and glutathione level. Food Chem, 119(2), 724-730 (2010). https://doi.org/10.1016/j.foodchem.2009.07.020
  5. Nardini, M., Natella, F., Gentili, V., Di Felice, M. and Scaccini, C.: Effect of caffeic acid dietary supplementation on the antioxidant defense system in rat: An in vivo study. Arch. Biochem. Biophys, 342(1), 157-160 (1997). https://doi.org/10.1006/abbi.1997.9977
  6. Fesen, M.R., Pommier, Y., Leteurtre, F., Hiroguchi, S., Yung, J. and Kohn, K.W.: Inhibition of Hiv-1 Integrase by Flavones, Caffeic Acid Phenethyl Ester (Cape) and Related-Compounds. Biochem. Pharmacol, 48(3), 595-608 (1994). https://doi.org/10.1016/0006-2952(94)90291-7
  7. Johnson, A.A., Marchand, C. and Pommier, Y.: HIV-1 integrase inhibitors: A decade of research and two drugs in clinical trial. Curr. Top. Med. Chem, 4(10), 1059-1077 (2004). https://doi.org/10.2174/1568026043388394
  8. Yang, S.Y., Hong, C.O., Lee, H., Park, S.Y., Park, B.G. and Lee, K.W.: Protective effect of extracts of Perilla frutescens treated with sucrose on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in vitro and in vivo. Food Chem, 133(2), 337-343 (2012). https://doi.org/10.1016/j.foodchem.2012.01.037
  9. Lee, K.J., Choi, C.Y., Chung, Y.C., Kim, Y.S., Ryu, S.Y., Roh, S.H. and Jeong, H.G.: Protective effect of saponins derived from roots of Platycodon grandiflorum on tert-butyl hydroperoxide- induced oxidative hepatotoxicity. Toxicol Lett, 147(3), 271-282 (2004). https://doi.org/10.1016/j.toxlet.2003.12.002
  10. Liu, C.L., Wang, J.M., Chu, C.Y., Cheng, M.T. and Tseng, T.H.: In vivo protective effect of protocatechuic acid on tertbutyl hydroperoxide-induced rat hepatotoxicity. Food Chem. Toxicol, 40(5), 635-641 (2002). https://doi.org/10.1016/S0278-6915(02)00002-9
  11. Rush, G.F., Gorski, J.R., Ripple, M.G., Sowinski, J., Bugelski, P. and Hewitt, W.R.: Organic Hydroperoxide-Induced Lipid-Peroxidation and Cell-Death in Isolated Hepatocytes. Toxicol. Appl. Pharm, 78(3), 473-483 (1985). https://doi.org/10.1016/0041-008X(85)90255-8
  12. Valentao, P., Carvalho, M., Carvalho, F., Fernandes, E., das Neves, R.P., Pereira, M.L., Andrade, P.B., Seabra, R.M. and Bastos, M.L.: Hypericum androsaemum infusion increases tert-butyl hydroperoxide-induced mice hepatotoxicity in vivo. J. Ethnopharmacol, 94(2-3), 345-351 (2004). https://doi.org/10.1016/j.jep.2004.06.012
  13. Yen, G.C., Yeh, C.T. and Chen, Y.J.: Protective effect of mesona procumbens against tert-butyl hydroperoxide-induced acute hepatic damage in rats. J. Agr. Food Chem, 52(13), 4121-4127 (2004). https://doi.org/10.1021/jf049840d
  14. Liochev, S. and Fridovich, I.: Superoxide is responsible for the vanadate stimulation of NAD(P)H oxidation by biological membranes. Arch. Biochem. Biophys, 263(2), 299-304 (1988). https://doi.org/10.1016/0003-9861(88)90639-X
  15. Feig, D.I., Reid, T.M. and Loeb, L.A.: Reactive Oxygen Species in Tumorigenesis. Cancer Res, 54(7), 1890s-1894s (1994).
  16. Chapple, I.L.C.: Reactive oxygen species and antioxidants in inflammatory diseases. J. Clin. Periodontol, 24(5), 287-296 (1997). https://doi.org/10.1111/j.1600-051X.1997.tb00760.x
  17. Wiseman, H. and Halliwell, B.: Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem. J, 313, 17-29 (1996). https://doi.org/10.1042/bj3130017
  18. Poli, G.: Pathogenesis of liver fibrosis: role of oxidative stress. Mol. Aspects Med, 21(3), 49-98 (2000). https://doi.org/10.1016/S0098-2997(00)00004-2
  19. Forbes, J. M., Coughlan, M.T. and Cooper, M.E.: Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57(6), 1446-1454 (2008). https://doi.org/10.2337/db08-0057
  20. Lee, Y.T., Chiang, L.Y., Chen, W.J., and Hsu, H.C.: Watersoluble hexasulfobutyl[60]fullerene inhibit low-density lipoprotein oxidation in aqueous and lipophilic phases. P. Soc. Exp. Biol. Med, 224(2), 69-75 (2000). https://doi.org/10.1046/j.1525-1373.2000.22403.x
  21. Reitman, S. and Frankel, S.: A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol, 28(1), 56-63 (1957). https://doi.org/10.1093/ajcp/28.1.56
  22. Kaczor, J.J., Ziolkowski, W., Popinigis, J. and Tarnopolsky, M.A.: Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatr. Res, 57(3), 331-335 (2005). https://doi.org/10.1203/01.PDR.0000150799.77094.DE
  23. Yadav, P., Sarkar, S. and Bhatnagar, D.: Action of Capparis decidua against alloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol. Res, 36(3), 221-228 (1997). https://doi.org/10.1006/phrs.1997.0222
  24. Townsend, D.M., Tew, K.D. and Tapiero, H.: The importance of glutathione in human disease. Biomed. Pharmacother, 57(3-4), 145-155 (2003). https://doi.org/10.1016/S0753-3322(03)00043-X
  25. Mitchell, J.R., Jollow, D.J., Potter, W.Z., Gillette, J.R. and Brodie, B.B.: Acetaminophen-Induced Hepatic Necrosis. IV. Protective Role of Glutathione. J. Pharmacol. Exp. Ther, 187(1), 211-217 (1973).
  26. Recknage, R.O.: Carbon Tetrachloride Hepatotoxicity. Pharmacol. Rev, 19(2), 145-208 (1967).
  27. Singal, P.K., Beamish, R.E. and Dhalla, N.S.: Potential Oxidative Pathways of Catecholamines in the Formation of Lipid Peroxides and Genesis of Heart-Disease. Adv. Exp. Med. Biol, 161, 391-401 (1983). https://doi.org/10.1007/978-1-4684-4472-8_22

Cited by

  1. Characteristics on lipid and pigments of lotus root, dried laver, and perilla leaf bugak (Korean fried cuisine) made by Korean traditional recipe vol.29, pp.6, 2013, https://doi.org/10.9724/kfcs.2013.29.6.805
  2. Effects of Cladosiphon Okamuranus Dietary Fiber on Cholesterol in High Fat Diet-Fed Rats vol.29, pp.4, 2014, https://doi.org/10.13103/JFHS.2014.29.4.370
  3. Effects of Cladosiphon okamuranus on Lipid Metabolism in High-fat-diet Rats vol.26, pp.6, 2016, https://doi.org/10.5352/JLS.2016.26.6.657