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Abstract – Probabilistic assessment of voltage stability margin (VSM) with existence of correlated 

wind speeds is investigated. Nataf transformation is adopted to establish wind speed correlation (WSC) 

model. Based on the saddle-node bifurcation transversality condition equations and Monte Carlo 

simulation technique, probability distribution of VSM is determined. With correlation coefficients 

range low to high value, the effect of WSC on VSM is studied. In addition, two risk indexes are 

proposed and the possible threat caused by WSC is evaluated from the viewpoint of risk analysis. 

Experimental results show that the presence of correlated wind speeds is harmful to safe and stable 

operation of a power system as far as voltage stability is concerned. The achievement of this paper 

gives a detailed elaboration about the influence of WSC on voltage stability and provides a potentially 

effective analytical tool for modern power system with large-scale wind power sources integration. 
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1. Introduction 
 

Voltage stability investigation is an important branch of 

power system stability researches and to prevent voltage 

collapse is a crucial prerequisite for electrical power 

network safety and reliability [1]. With the aggravation of 

energy crisis across the world, renewable energy power 

source such as wind power has been increasingly brought 

into power grid. Due to the uncertainty of wind speed, 

wind farm output generally shows strong stochastic 

property. Probabilistic voltage stability assessment with 

consideration of wind power stochastic property is a 

valuable topic in current power system [2]. 

Wind farms with close locations are usually in the same 

geographically wind belt, where wind speeds of these wind 

farms have strong correlation relationship. Therefore 

power generations of adjacent wind farms are spatially 

correlated [3]. When a power system is integrated with 

multiple close located wind farms, wind speed correlation 

(WSC) will strengthen the synchronization of different 

wind farm’s power generation, and consequently increase 

the fluctuation of total wind power. With constant 

promotion of wind power in modern power grid, the 

impact of WSC on planning and operation should be 

carefully studied [4]. 

The effect of WSC on power system has been investigated 

in several technical literatures, and the researches focus on 

various aspects such as probabilistic power flow (PPF) [5-

8], reliability evaluation [9-11], adequacy assessment [12-

13], small-signal stability analysis [14] and economic 

dispatch [15]. In [5], a PPF technique based on extended 

point estimate method and orthogonal transformation is 

proposed. Reference [5] concludes that the expected values 

of output variables remain basically unchanged as the 

correlation among input random variables increases, 

however, the standard deviations of output variables 

increase significantly as the correlation grows. In [9], a 

Monte Carlo (MC) simulation based reliability evaluation 

procedure considering WSC is developed. The indices loss 

of load expectation (LOLE) and loss of energy expectation 

(LOEE) increase as the correlation degree increases. Based 

on state sampling MC simulation technique, reference [12] 

investigates the contributions of large-scale wind farms 

with different degrees of WSC to the load point and system 

reliability indices. In [14], a probabilistic small-signal 

stability analysis method is proposed. Spatial correlation of 

adjacent wind farms is considered by cross cumulant 

technique and test results indicate that the consideration of 

WSC has changed probabilistic density function curve of 

the real part of critical eigenvalue. In [15], a novel 

economic dispatch formulation that takes into account both 

correlated wind speeds and autocorrelation for each 

location is put forward. Results of the case study reveal 

that a more expensive generation cost is given when 

correlation is included. 

Despite above recent works, however, the impact of 

WSC on power system voltage stability is seldom analyzed 

specially. The insufficient research in this field motivates 

the work reported in this paper, where voltage stability 

evaluation with consideration of wind speed correlation and 
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wind farm output stochastic property is comprehensively 

studied. The main contributions of this paper are three-fold: 

1. Nataf transformation is incorporated into voltage 

stability evaluation using Monte Carlo simulation 

technique. The results demonstrate the differences in 

voltage stability margin (VSM) probability distribution 

under varied wind speed correlation coefficients. 

2. Two risk indexes for voltage stability evaluation with 

consideration of WSC are presented. The possible 

threat to VSM caused by WSC is evaluated from the 

viewpoint of risk analysis. 

3. Impact of wind power penetration level as well as 

wind turbine’s power factor on VSM is also 

investigated. Positive and negative influences are 

discussed. 

 

The rest of the paper is organized as follows. In Section 

2, Nataf transformation is summarized and adopted to 

establish the WSC model. Section 3 gives the wind farm 

model. Procedure of VSM probabilistic assessment 

considering correlated wind speeds is proposed in Section 4. 

Two risk indexes for voltage stability evaluation are 

presented in Section 5. Case study is provided in Section 6. 

Finally, the paper concludes in Section 7. 

 

 

2. Wind Speed Correlation Modeling 

 

In this paper, Nataf transformation is adopted to establish 

wind speed correlation model. The correlated wind speed 

vector can be transformed to independent standard normal 

variable vector with implementation of Nataf transformation, 

and the random samples of correlated wind speeds are 

generated by inverse Nataf transformation [16]. 

 

2.1 Nataf transformation 

 

Nataf transformation is a mathematical model for the 

transformation from correlated original space to mutually 

independent standard normal one. It requires the marginal 

cumulative distribution function (CDF) of each random 

variable and their correlation coefficient matrix (CCM), 

which are easy to be obtained in engineering applications 

[17-18]. 

When the marginal CDF F(V) = [F1(v1), F2(v2), …, 

Fn(vn)]
T and the CCM ρV of correlated wind speed vector 

V=[v1,v2,…,vn]
T are available, a correlated standard normal 

variable (SNV) vector Y= [y1, y2, ..., yn]
T can be obtained 

by marginal transformation [19] 
 

 
1( ( ))  1, 2,...,i i iy F v i n−= =Φ   (1) 

 
where Φ (•) is the CDF of SNV. 

Denote ρY as the CCM of vector Y, the relationship 

between correlation coefficient ρvij and ρyij can be 

expressed as [20] 
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where ρvij and ρyij are elements of CCM ρV and ρY, µi and σi 

are, respectively, the mean and standard deviation (SD) of 

wind speed vi; φ2(yi, yj, ρyij) is the two-dimensional standard 

normal probability density function of zero means, unit SD, 

and correlation coefficient ρyij. 

To avoid complex integral operation, Liu and Der 

Kiureghian presented the empirical formula to approxi-

mately determine the solution of (2) for Weibull distribution 

as follows [19] 
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For given F(V) and ρV, ρY can be computed by (3). In 

most engineering applications, ρY is positive definite. So it 

can be decomposed by Cholesky decomposition 

 

 
T

Y Y Y=ρ G G  (4) 

 

where GY is an inferior triangular matrix. Based on GY, the 

correlated SNV vector Y can be transformed into a new 

vector X=[x1,x2,…,xn]
T of independent standard normal 

variables in the following manner. 

 

 
1

Y

−
=X G Y   (5) 

 

Performing (1)~(5) transforms correlated wind speed 

vector V to independent SNV vector X .These procedures 

are the positive process of Nataf transformation. 

 

2.2 Generation of correlated wind speed samples 

 

The random samples of correlated wind speeds can be 

generated by inverse Nataf transformation when F(V) and 

ρV are available. The main steps are as follows. 

1) Generate random samples Xs of independent SNV 

vector X. 

2) Obtain the CCM ρY of correlated SNV vector Y by (3). 
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Decompose this matrix by Cholesky decomposi-tion 

and get GY. 

3) Generate random samples Ys of vector Y by (6). 
 

 s sY=Y G X  (6) 

 

4) Generate correlated random samples Vs of wind speed 

vector V by marginal transformation as (7). 
 

 
1

s s( ( ))−=V F Φ Y  (7) 

 

 

3. Wind Farm Modeling 

 

A wind farm that can produce bulk active power is 

established by installing and utilizing many wind turbines. 

Power output of a wind farm depends on the power 

generation of wind turbines in the farm, while the working 

efficiency of a wind turbine is determined by wind speed. 

Wind farm model is developed by knowing wind speed 

probability distribution and wind turbine model. 

 

3.1 Probability distribution of wind speed 

 

Several previous works have investigated wind speed 

statistical characteristics and presented lot kinds of 

probability distributions to evaluate wind speed, such as 

Weibull, Rayleigh and LogNormal [21-22]. A Weibull 

distribution, which the wind speed profile at a given 

location most closely follows over time [23], is taken in 

this paper. The probability density function for a Weibull 

distribution is given by 

 

 
1( ) ( ) exp[ ( ) ]k kk v v

f v
c c c

−= −   (8) 

 

where v denotes wind speed; k and c are scale parameter 

and shape parameter respectively. 

 

3.2 Wind turbine model 

 

Power output of a wind turbine is related to wind speed 

and there is a nonlinear relationship between them. It is 

assumed that all wind farms are equipped with IEC IIA 

wind turbine in this paper. Active power output of the IEC 

IIA wind turbine PWT with a given wind speed input v may 

be stated as [24] 
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where Pr is the rated power of the wind turbine; vci, vr and 

vco are respectively cut-in, rated and cut-out speed of the 

wind turbine. 

 

3.3 Wind farm output 

 

Denote NTi as the number of wind turbines installed in 

the wind farm connected to bus i. Active power output of 

the wind farm located at bus i, i.e. PWF,i is the sum of active 

power generation of wind turbines included in it, as 

 

 WF, WT,

1

iNT

i j

j

P P
=

=∑   (10) 

 
where PWT,j is active power generation of the jth wind 

turbine in the wind farm. 

Reactive power consumption of a wind farm depends on 

the wind turbine type and the operation mode. In practice, 

recent grid codes of many countries require that grid-

connected wind farms should provide reactive power 

control capabilities and network operators may specify 

power factor requirement for the wind farms [25]. Thus, 

for a given wind farm, PQ model with constant power 

factor is adopted in this paper and the reactive power 

consumption QWF,i can be computed as 

 

 WF, WF, tani i iQ P θ= ⋅  (11) 

 
where θi is the power factor angle of wind turbines 

installed in the wind farm connected to bus i. 

 

 

4. Probabilistic Assessment of Voltage  

Stability Margin 

 

4.1 Voltage stability margin: problem formulation 

and calculation method 

 

VSM indicates the precise distance between current 

operating state and voltage collapse critical state for a 

given system, which is an effective index used to evaluate 

voltage stability in academic research as well as engineering 

practice. 

Fig. 1 shows the well-known PV-curve, which can be 

obtained by continuation methods [26]. The horizontal axis 

P represents total active power load of a given system, and 

the vertical axis Vi denotes voltage magnitude for a certain 

bus i. As the system load increases, voltage level declines, 

the lower branch of PV-curve beyond the nose point is 

corresponding to unstable region where bus voltage is 

uncontrollable. The allowable system active power load 

increment from current operating state to the critical state 

(nose point in Fig. 1) is defined as VSM.  

Voltage stability critical state is related to saddle-node 

bifurcation (SNB) of the power flow equations [27]. The 

following transversality conditions can be used to 
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characterize and detect SNB [28-29] 

 

 ( , ) 0λ =f x  (12) 

 ( , ) 0λ ⋅ =xf x v  (13) 

 1 0⋅ − =Tl v  (14) 

 

where f(x, λ) in (12) is the extended power flow equations 

which can be detailed as (15) and (16); λ is a scalar 

bifurcation parameter and is known as the “loading factor”; 

x = [θ, V]T is a vector of state variables which represent 

PQ bus voltage angles θ and voltage magnitudes V. The 

SNB characteristic equations in (13) implies that fx(x, λ), 

i.e. the Jocabian matrix of power flow equations is 

singular; v is a vector of normalized right eigenvectors. 

The normalized function expressed by (14) is used to 

restrain v not equal to zero. Generally, l is set to ep, a vector 

has same dimension with v. In ep the pth element is equal to 

one while other elements are all zero. 

The incompact expression of the extended power flow 

equations f(x, λ) is as follows. 
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(16)

 

 

where PGi(λ) denotes active power generation of 

conventional generator at bus i; PWFi and QWFi respectively 

represent active power generation and reactive power 

consumption of wind farm at bus i. Active and reactive 

power load at bus i are expressed as PLi(λ) and QLi(λ). Qcri 

is the reactive compensation capacity at bus i. Vi is the 

voltage magnitude at bus i; θij is the voltage phase angles 

difference between bus i and bus j. Gij and Bij denote the 

transfer conductance and susceptance between bus i and 

bus j respectively. N is the number of buses; NPV and NPQ 

are the set of PV buses and PQ buses. PGi(λ), PLi(λ) and 

QLi(λ) are all functions of bifurcation parameter λ, their 

concrete forms are dependent on the load increasing pattern 

and the mode of power dispatch among generators. The 

detail model of PGi(λ), PLi(λ) and QLi(λ) adopted in this 

work is illustrated in case study. 

The transversality conditions expressed by (12)~(14) are 

nonlinear equations. For solving these equations and 

obtaining x, v, and λ corresponding to voltage collapse 

critical state, the linearized equations as (17) is established 

and Newton–Raphson method can be utilized to iterative 

calculation. 
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In (17), fλ is partial derivatives matrix for the ratio 

between f(x, λ) and λ; fxx is the Hessian matrix of power 

flow equations. ∆x, ∆v and ∆λ represent increment of x, v, 

and λ respectively. 

In order to reduce computational efforts of the high 

dimensional Newton iterative equations, matrix reduction 

technique presented in [30] is adopted to solve (17) and x, 

v, and λ are obtained. Based on λ, active power demand at 

load buses corresponding to the voltage collapse critical 

state, i.e. PLi(λ) can be determined. Voltage stability margin 

is finally calculated as follows. 

 

 ,0

1 1

( )
N N

Li Li

i i

VSM P Pλ
= =

= −∑ ∑  (18) 

 

where PLi0 stands for base active load level of bus i in the 

initial operating state. 

 

4.2 Probabilistic VSM assessment based on Monte 

Carlo simulation 

 

In the mathematical model (12)~(14) for power system 

VSM determination, correlation of wind speeds and 

probabilistic behavior of wind farm outputs are considered, 

and a probabilistic VSM assessment model can be 

established. The input random variable of the probabilistic 

assessment model is V = [v1, v2,…, vn]
T, i.e. vector of 

correlated wind speeds of wind farms, while the response 

is voltage stability margin. 

For given marginal CDF F(V) and CCM ρV of correlated 

wind speed vector V, different wind samples are produced 

by Monte Carlo simulation and VSM is computed with 

implementation of (17) and (18). The general procedure of 

probabilistic VSM assessment is as follows. 

1) Input the data of a electric power system and 

configure the number of Monte Carlo simulation 

samples as NS. 

2) Based on F(V) and ρV, perform Nataf transformation 

 
Fig. 1. Graphic representation of PV-curve and VSM 
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and generate NS samples, each of which is a 

correlated random wind speed vector Vs satisfying a 

certain correlation coefficient matrix. 

3) Set k = 1. 

4) For Vs=[v1,v2,…,vn]
T in the kth sample, active power 

generation PWFi and reactive power consumption 

QWFi of the wind farm connected to bus i are 

calculated by (9)~(11). 

5) The calculation for linearized Eqs. (17) is implemented, 

with extended power flow Eqs. (15, 16) adopted and 

wind farm power PWFi as well as QWFi considered. 

6)  Determine VSM corresponding to the kth Monte Carlo 

sample by (18). 

7)  Check whether the maximum Monte Carlo simulation 

limit NS is reached. If not, k = k+1 and go to step 4). 

8) Depict statistical histogram of voltage stability 

margins for multiple samples, and the VSM probability 

distribution under a certain wind speed correlation 

degree is obtained. 

 

 

5. Risk Analysis 

 

Probabilistic assessment methods provide a range of 

VSM values with their probabilities instead of a deterministic 

value. With respect to probabilistic variation of VSM, a 

desired VSM value is associated with a certain risk. In 

this paper, two risk evaluation indexes similar with 

probabilistic assessment of Total Transfer Capability in 

[31] are presented. 

1) In the operation of a given electric power network, it 

is a customary expectation that generation and 

transmission system can support more power load 

growth, thus the high value of voltage stability 

margin is desired. From this point of view, having 

any VSM values lower than a given VSMS is 

considered as risk. So risk of not achieving a specific 

VSMS is equal to the probability that voltage stability 

margin is less than or equal to VSMS as follows. 

 

    s

1 s

( )
( ) 100%

N VSM VSM
Risk VSM

NS

≤
= ×  (19) 

 

where N(VSM ≤ VSMS) is the number of Monte Carlo 

simulation samples in which obtained VSM values are 

equal to or less than VSMS. 

2) In addition to considering the probability of having 

VSM values lower than a specific VSMS, for each 

Monte Carlo sample satisfying VSM ≤ VSMS, the 

amount of voltage stability margin deficiency, i.e. 

(VSMS–VSM) is also considered. The second risk 

index indicates the summation of standardized 

margin shortages corresponding to VSMS and can be 

formulated as 

 
s

s

2 s

s

1
( ) 100%

VSM VSM

VSM VSM
Risk VSM

NS VSM≤

−
= ⋅ ×∑   (20) 

 

The index Risk2 denotes cumulative effect of margin 

deficiencies and provides a novel perspective for evaluating 

risk degree of voltage instability. 

According to the above two risk index values, network 

operators may perform more sophisticated analysis and 

judgment about VSM with large-scale wind power 

penetration. This information is helpful to determine or 

modify operation protocols and control strategies which are 

beneficial to the enhancement of voltage stability. 

 

 

6. Case Study 

 

6.1 Test system and parameter settings 

 

To investigate the effect of WSC on VSM, a modified 

IEEE 57-bus system with four grid-connected wind farms 

is used as the test system, which is shown in Fig. 2. 

Since the selection of installing locations of wind 

generators is not the issue of discussion in this paper, it is 

assumed that the wind farms have already been established 

at bus 4, 5, 54 and 55. This assumption does not affect the 

investigation as well as test of the presented probabilistic 

assessment methods. WSC is closely related to the 

 

Fig. 2. Modified IEEE 57-bus system integrated with four 

wind farms 
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geographical distance between wind farms. It is a reasonable 

assumption that wind speed at bus 4 is correlated in certain 

degree with wind speed at bus 5, because of their close 

locations. Similarly, it is assumed that wind speeds at bus 

54 and bus 55 have correlation relationship to some extent. 

WSC between bus i and bus j can be expressed by their 

correlation coefficient ρVi,j and the following CCM ρV is 

established for four grid-connected wind farms. 

 

 

4,5

5,4

54,55

55,54

1 0 0

1 0 0

0 0 1

0 0 1

V

V

V
V

V

ρ
ρ

ρ
ρ

 
 

=  
 
  

ρ  (21) 

 

Total installation capacity of the four grid-connected 

wind farms is 256 MW, which is approximately 20% of 

active power load in initial operating state of IEEE 57-bus 

system. The installed capacity is equally divided into four 

wind farms. Each wind farm includes 32 IEC IIA wind 

turbines. Table 1 summarizes main parameters of IEC IIA 

wind turbine [24]. The same Weibull distribution with scale 

parameter k and shape parameter c equal to 9.1 and 2.7 

respectively is used to model wind speed at four different 

buses. Sample size of Monte Carlo simulation is set to 

10000. Wind speed samples with given CCM ρV is 

obtained from inverse Nataf transformation mentioned in 

section 2.2, and wind farm power output is calculated with 

implementation of (9)~(11). The load increasing pattern is 

that active power demand at each bus grows simultaneously 

according to the proportion of bus active power load at 

initial operating point, while load power factor keep 

constant, as expressed by (22) and (23). 

 

 0( ) (1 )Li LiP Pλ λ= ⋅ +  (22) 

 0 0( )Li Li Li LiQ Q K Pλ λ= + ⋅ ⋅  (23) 

 

where PLi0 and QLi0 stand for base active and reactive load 

levels of bus i in the initial operating state. KLi is a constant 

used to represent constant power factor load. Active power 

demand increment of the entire system is dispatched 

among conventional generators according to their base 

active power generation in the initial operating state, which 

can be written as 

 

 0 0 0 0

1 1

( )
N N

Gi Gi Gi Li Gi

i i

P P P P Pλ λ
= =

= + ⋅ ⋅∑ ∑  (24) 

 

where PGi0 stands for base active power generation of bus i 

in the initial operating state. 

 

Table 1. IEC IIA wind turbine parameters 

Pr (MW) vci (m/s) vr (m/s) vco (m/s) cos θ 

2 2.5 13 25 0.90 

6.2 Impact of wind speed correlation on VSM 
 
In order to investigate the impact of correlated wind 

speeds on VSM, Monte Carlo simulation is implemented 

and VSM probability distribution under different correlation 

degree is obtained. Figs. 3 (a)~(c) illustrate VSM statistical 

histograms of the IEEE 57-bus system under wind speed 

correlation coefficients ρV4,5= ρV5,4= ρV54,55= ρV55,54= 0.1, 0.5 

and 0.9 (abbreviated ρ, the same as follows) respectively, 

where the vertical axis p denotes probability related with 

the corresponding horizontal axis VSM value. As shown in 

Fig. 3, the increase of wind speed correlation degree 

strengthens synchronization in power output of adjacent 

wind farms, thus active power generation as well as 

reactive power consumption of the wind farms with close 

locations increase and decrease simultaneously. These 

properties result in more fluctuation of the total wind 
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(b) ρ= 0.5 
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(c) ρ= 0.9 

Fig. 3. Statistical histograms of VSM under different wind 

speed correlation coefficients 
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power output and consequently the probabilities of low and 

high distribution intervals of VSM are significantly larger. 

The low value distribution of VSM in Fig. 3 means that 

voltage stability margin is inadequate, which is harmful to 

safe and stable operation of the power system. As a further 

analysis, the situations of ρ= 0.1~0.9 are also investigated. 

For each ρ, denote VSM value in the lowest 10% section of 

the entire VSM distribution range as Event-A, Table 2 lists 

P(Event-A), i.e. the occurrence probability of Event-A 

under different wind correlation coefficients. Based on the 

data summarized in Table 2, summing-ups similar with Fig. 

3 can be easily achieved. With strengthening of WSC of 

adjacent wind farms, the probability of SNB appearances 

(i.e. voltage collapse) under relative lower load growth 

level increases. The presence of correlated wind speeds 

poses a potential threat to voltage stability, which should be 

taken seriously in power system planning and operation. 

Necessary precautions should be devised to avoid voltage 

stability deterioration caused by strong WSC. 

 

Table 2. Occurrence probability of Event-A under different 

wind correlation coefficients 

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

P(Event-A) 

(%) 
0.57 1.67 1.79 2.15 2.59 3.22 3.97 5.28 6.03 

 

6.3 Impact of wind power penetration level on VSM 

 

The case study in section 6.2 illustrates influence of 

correlated wind speeds on VSM probability distribution 

under condition of total 256 MW wind power. Here the 

impact of wind power penetration level is investigated by 

increasing total installation capacity of the four grid-

connected wind farms to 384 MW and 512 MW, which are 

respectively 30% and 40% of active power load in the 

initial operating state of IEEE 57-bus system. 

For weak, medium and strong WSC, i.e. ρ= 0.1, 0.5 and 

0.9, probability distributions of VSM under different wind 

power penetration level are calculated. As the statistical 

indices summarized in Table 3, when ρ being equal, with 

the growth of wind power installation capacity, the mean 

value of VSM probability distribution decreases, on the 

contrary, the standard deviation increases. Based on these 

results, it can be concluded that the augmentation of grid-

connected wind power generation, as a whole, takes certain 

negative effect on voltage stability margin, the average 

value is reduced while the fluctuation is enhanced. 

 

6.4 Impact of wind turbine’s power factor on VSM 

 

In this paper, it is assumed that all wind farms are 

equipped with the IEC IIA wind turbine. Main parameters 

of this type of wind turbine are listed in Table 1. Specially, 

the power factor is 0.90. Here the impact of wind turbine’s 

power factor is investigated by modifying this factor to 

0.85 and 0.95, while other parameters remain same as the 

case study in section 6.2. 

For ρ= 0.1, 0.5 and 0.9, probability distributions of VSM 

under different wind turbine’s power factor are calculated. 

As the statistical indices shown in Table 4, when ρ is fixed, 

the increase of wind turbine’s power factor results in 

greater mean value of VSM probability distribution, while 

the standard deviation decreases. The high value of power 

factor means that less reactive power consumption 

corresponding to a certain active power generation for a 

wind farm. This property implies some reactive power 

demand saving as the network reactive power loss and 

reactive power load increase, which is beneficial to the 

voltage stability. 

 

Table 4. Statistical indices of VSM under different wind 

turbine’s power factor 

ρ Power factor 
Mean value 

(MW) 

Standard deviation 

(MW) 

0.85 1112.8020 5.2673 

0.90 1117.5538 4.3942 0.1 

0.95 1118.2247 1.7739 

0.85 1113.8472 6.1842 

0.90 1115.9719 4.2829 0.5 

0.95 1119.2437 2.7003 

0.85 1112.4574 6.4595 

0.90 1115.1646 4.6109 0.9 

0.95 1117.8736 2.6860 

 

6.5 Risk analysis application 

 

The analysis in the previous section concentrates on 

VSM probability distribution under different correlation 

coefficients, here risk indexes defined in section 5 is 

adopted and risk analysis application is investigated. Fig. 4 

illustrates the values of Risk1 computed by (19) for 

correlation coefficients ρ=0.1, 0.5 and 0.9 versus VSM. As 

shown in Fig. 4, risk value corresponding to a specific 

VSM level increases when the correlation degree of 

adjacent wind farms increases. Take VSMS=1115 MW as an 

instance, for ρ=0.1, 0.5 and 0.9, risks of voltage stability 

margin not achieving this given value are 24.41%, 30.26% 

and 33.34% respectively. Considering the amount of 

voltage stability margin deficiency, Risk2 expressed by (20) 

is also studied and similar simulation result is demonstrated 

 
Table 3. Statistical indices of VSM under different wind 

power penetration level 

ρ 
Wind power 

penetration (%) 

Mean value  

(MW) 

Standard deviation 

(MW) 

20 1117.5538 4.3942 

30 1111.0509 10.2024 0.1 

40 1103.7425 15.1105 

20 1115.9719 4.2829 

30 1111.6495 10.4858 0.5 

40 1102.6045 20.0199 

20 1115.1646 4.6109 

30 1110.6098 10.8808 0.9 

40 1102.4714 21.4453 
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in Fig. 5. For ρ=0.1, 0.5 and 0.9, if the specific level VSMS 

is set as 1115 MW, risk of voltage stability margin 

shortage are respectively 8.59%, 12.31% and 15.83%. 

From foregoing analysis, it is clear that the stronger the 

WSC of adjacent wind farms is, the greater the risk of 

voltage collapse for a given load growth level is, similarly 

the larger the amount of voltage stability margin deficiency 

is. More attention should be paid to correlated wind speeds 

in voltage stability research. Robust and efficient corrective 

measures for voltage stability margin improvement under 

strong WSC are worth further study. On the other hand, 

application of the presented risk indexes provides a more 

comprehensive analytical tool for voltage stability evaluation, 

which is proved to be one of the potentially useful 

techniques in practical power system with large-scale wind 

power penetration and strong wind speed correlation. 

 

 

7. Conclusion 
 
Impact of correlated wind speeds on power system 

voltage stability is comprehensively investigated in this 

paper. Strong WSC of adjacent wind farms leads to great 

probability of voltage collapse under relative lower load 

growth level, implying that the presence of correlated wind 

speeds is harmful to safe and stable operation of power 

system as far as voltage stability is concerned. Besides, 

impact of wind power penetration level and wind turbine’s 

power factor on VSM are also investigated. Furthermore, 

two risk indexes are presented and the possible threat 

caused by WSC is evaluated from the viewpoint of risk 

analysis. The achievement of this paper gives a detailed 

elaboration about the influence of correlated wind speeds 

on voltage stability and provides a potentially effective 

analytical procedure for modern power system with wind 

power and other renewable energy power sources 

integration. 
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