DOI QR코드

DOI QR Code

Growth, Feed Utilization and Blood Metabolic Responses to Different Amylose-amylopectin Ratio Fed Diets in Tilapia (Oreochromis niloticus)

  • Chen, Meng-Yao (Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Jimei University) ;
  • Ye, Ji-Dan (Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Jimei University) ;
  • Yang, Wei (Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Jimei University) ;
  • Wang, Kun (Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Jimei University)
  • Received : 2013.01.08
  • Accepted : 2013.04.06
  • Published : 2013.08.01

Abstract

A feeding trial was conducted in tilapia to determine the growth performance, nutrient digestibility, digestive enzymes, and postprandial blood metabolites in response to different dietary amylose-amylopectin ratios. Five isonitrogenous and isolipidic diets containing an equal starch level with different amylose-amylopectin ratios of 0.11 (diet 1), 0.24 (diet 2), 0.47 (diet 3), 0.76 (diet 4) and 0.98 (diet 5) were formulated using high-amylose corn starch (as the amylose source) and waxy rice (as the amylopectin source). Each diet was hand-fed to six tanks of 15 fish each, three times a day over a 6-wk period. After the growth trial, a postprandial blood metabolic test was carried out. Fish fed diet 2 exhibited the highest percent weight gain and feed efficiency and protein efficiency ratio, whereas fish fed with diet 5 showed the lowest growth and feed utilization among treatments. The digestibility for starch in fish fed diet 1 and 2 was higher than those in fish fed with other diets (p<0.05). The highest activities for protease, lipase and amylase were found in fish fed the diet 2, diet 1, and diet 1 respectively among dietary treatments, while the lowest values for these indexes were observed in fish fed the diet 3, diet 5 and diet 4, respectively. The liver glycogen concentrations in fish fed diets 4 and 5 were found higher than in fish fed other diets (p<0.05). The feeding rate, hepatosomatic index, condition factor, and plasma parmeters (glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol) did not differ across treatments. In terms of postprandial blood responses, peak blood glucose and triglycerides were lower after 3 or 6 h in the fish fed with diets 3-5 than in the fish fed diet 1, but delayed peak blood total amino acid time was observed in fish fed with the diets 1 or 2. The lowest peak values for each of the three blood metabolites were observed in fish fed diet 5. The results indicate that high-dietary amylose-amylopectin ratio could compromise growth, but help in reducing the blood glucose stress on fish caused by postprandial starch load.

Keywords

References

  1. AOAC. 1995. Association of Official Analytical Chemists. In: Official Methods of Analysis (Ed. P. A. Cunniff). 16th edn. AOAC International, Arlington, VA, USA.
  2. Aziz, A. A., L. S. Kenney, B. Goulet, and E. Abdel-Aal. 2009. Dietary starch type affects body weight and glycemic control in freely fed but not energy-restricted obese rats. J. Nutr. 139: 1881-1889. https://doi.org/10.3945/jn.109.110650
  3. Behall, K. M. and J. Hallfrisch. 2002. Plasma glucose and insulin reduction after consumption of breads varying in amylose content. Eur. J. Clin. Nutr. 56: 913-920. https://doi.org/10.1038/sj.ejcn.1601411
  4. Behall, K. M., D. J. Scholfield, and J. Canary. 1988. Effect of starch structure on glucose and insulin responses in adults. Am. J. Clin. Nutr. 47:428-432.
  5. Behall, K. M., D. J. Scholfield, I. Yuhaniak, and J. Canary. 1989. Diets containing high amylose vs amylopectin starch: effects on metabolic variables in human subjects. Am. J. Clin. Nutr. 49:337-344.
  6. Berger, A., and J. E. Halver. 1987. Effect of dietary protein, lipid and carbohydrate content on the growth, feed efficiency and carcass composition of striped bass, Morone saxatillis (Walbaum), fingerlings. Aquac. Res. 18:345-356. https://doi.org/10.1111/j.1365-2109.1987.tb00323.x
  7. Bergh, M., A. Razdan, and P. Aman. 1999. Nutritional influence of broiler chicken diets based on covered normal, waxy and high amylose barleys with or without enzyme supplementation. Anim. Feed Sci. Technol.78:215-226. https://doi.org/10.1016/S0377-8401(98)00281-8
  8. Bergot, F. 1979. Carbohydrate in rainbow trout diets: effects of the level and source of carbohydrate and the number of meals on growth and body composition. Aquaculture 18:157-167. https://doi.org/10.1016/0044-8486(79)90028-0
  9. Boujard, T., A. Gelineau, D. Coves, G. Corraze, G. Dutto, E. Gasset, and S. Kaushik. 2004. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 231: 529-545. https://doi.org/10.1016/j.aquaculture.2003.11.010
  10. Brauge, C., F. Medale, and G. Corraze. 1994. Effect of dietary carbohydrate levels on growth, body composition and glycaemia in rainbow trout, Oncorhynchus mykiss, reared in seawater. Aquaculture 123:109-120. https://doi.org/10.1016/0044-8486(94)90123-6
  11. Camp, L. K., L. L. Southern, and T. D. Bidner. 2003. Effect of carbohydrate source on growth performance, carcass traits, and meat quality of growing-finishing pigs. J. Anim. Sci. 81:2488-2495.
  12. Cohen, R. S., and T. D. Jr. Tanksley. 1973. Energy and protein digestibility of sorghum grains with different endosperm textures and starch types by growing swine. J. Anim. Sci. 37: 931-935.
  13. Collins, N. E., E. T. Moran Jr., and H. L. Stilborn. 2003. Performance of broilers fed normal and waxy corn diets formulated with chick and rooster derived apparent metabolizable energy values for the grains. J. Appl. Poult. Res. 12:196-206. https://doi.org/10.1093/japr/12.2.196
  14. Dai, Q., X. Li, S. Zhang, G. Jiang, Y. Hu, and F. Chen. 2008. Effects of different dietary amylose-amylopectin ratios on production performance and nutrient availability of yellow broilers. Chinese J. Anim. Nutr. 20:249-255.
  15. Denardin, C. C., N. Boufleur, P. Reckziege, L. P. da Silva, and M. Walter. 2012. Amylose content in rice (Oryza sativa) affects performance, glycemic and lipidic metabolism in rats. Cienc. Rural 42:381-387. https://doi.org/10.1590/S0103-84782012005000002
  16. Deng, J., X. Wu, S. Bin, T. J. Li, R. Huang, Z. Liu, Y. Liu, Z. Ruan, Z. Deng, Y. Hou, and Y. L. Yin. 2010. Dietary amylose and amylopectin ratio and resistant starch content affects plasma glucose, lactic acid, hormone levels and protein synthesis in splanchnic tissues. J. Anim. Physiol. Anim. Nutr. 94:220-226. https://doi.org/10.1111/j.1439-0396.2008.00902.x
  17. Enes, P., S. Panserat, S. Kaushik, and A. Oliva-Teles. 2009. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol. Biochem. 35:519-539. https://doi.org/10.1007/s10695-008-9259-5
  18. Enes, P., H. Peres, A. Couto, and A. Oliva-Teles. 2010. Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles. Fish Physiol. Biochem. 36:903-910. https://doi.org/10.1007/s10695-009-9366-y
  19. Englyst, H. N., and G. J. Hudson. 1996. The classification and measurement of dietary carbohydrates. Food Chem. 57:15-21. https://doi.org/10.1016/0308-8146(96)00056-8
  20. Ertl, D., and N. Dale. 1997. The metabolizable energy of waxy vs. normal corn for poultry. J. Appl. Poult. Res. 6:432-435. https://doi.org/10.1093/japr/6.4.432
  21. Fugui, Y., Z. Zhenzhen, H. Ju, and Y. Yulong. 2010. Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Br. J. Nutr. 103:1404-1412. https://doi.org/10.1017/S0007114509993321
  22. Glencross, B., D. Blyth, S. Tabrett, N. Bourne, S. Irvin, M. Anderson, T. Fox-Smith, and R. Smullen. 2012. An assessment of cereal grains and other starch sources in diets for barramundi (Lates calcarifer)-implications for nutritional and functional qualities of extruded feeds. Aquacult. Nutr. 18: 388-399. https://doi.org/10.1111/j.1365-2095.2011.00903.x
  23. Goddard, M. S., G. Young, and R. Marcus. 1984. The effect of amylose content on insulin and glucose responses to ingested rice. Am. J. Clin. Nutr. 39:388-392.
  24. Granfeldt, Y., A. Drews, and I. Bjorck. 1995. Arepas made from high amylose corn flour produce favorably low glucose and insulin response in healthy humans. J. Nutr. 125:459-465.
  25. Granfeldt, Y., H. Liljeberg, A. Drews, R. Newman, and I. Bjorck. 1994. Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am. J. Clin. Nutr. 59:1075-1082.
  26. Gutierrez Del Alamo, A., M. W. A. Verstegen, L. A. den Hartog, P. Perez de Ayala, and M. J. Villamide. 2009. Wheat starch digestion rate affects broiler performance. Poult. Sci. 88:1666-1675. https://doi.org/10.3382/ps.2008-00502
  27. Hemre, G. I., O. Lie, and A. Sundby. 1993. Dietary carbohydrate utilization in cod (Gadus morhua): metabolic responses to feeding and fasting. Fish Physiol. Biochem. 10:455-463. https://doi.org/10.1007/BF00004600
  28. Hemre, G.-I., T. P. Mommsen, and Å. Krogdahl. 2002. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquacult. Nutr. 8:175-194. https://doi.org/10.1046/j.1365-2095.2002.00200.x
  29. Hruby, M. 2005. Challenge of corn variability. Feed Int. 26:5-11.
  30. Jun, H., C. Daiwen, and Y. Bing. 2010. Metabolic and transcriptomic responses of weaned pigs induced by different dietary amylose and amylopectin ratio. PLoS One. 5:e15110. https://doi.org/10.1371/journal.pone.0015110
  31. Kabir, M., S. W. Rizkalla, M. Champ, J. Luo, J. Boillot, F. Bruzzo, and G. Slama. 1998. Dietary amylose-amylopectin starch content affects glucose and lipid metabolism in adipocytes of normal and diabetic rats. J. Nutr. 128:35-43.
  32. Krogdahl, Å., G.-I. Hemre, and T. P. Mommsen. 2005. Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac. Nutr. 11:103-122. https://doi.org/10.1111/j.1365-2095.2004.00327.x
  33. Kyuma, T., and M. Ishida. 1989. Growth and digestion of goats fed high-amylose corn and waxy corn. Asian-Aust. J. Anim. Sci. 2:359-360. https://doi.org/10.5713/ajas.1989.359
  34. Le Leu, R. K., Y. Hu, I. L. Brown, and G. P. Young. 2009. Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutr. Metab. 6:11. https://doi.org/10.1186/1743-7075-6-11
  35. Mahadevamma, S., and R. N. Tharanathan. 2007. Processed rice starch characteristics and morphology. Eur. Food Res. Technol. 225:603-612. https://doi.org/10.1007/s00217-006-0419-5
  36. Mommsen, T. P., and E. M. Plisetskaya. 1991. Insulin in fishes and agnathans: history, structure and metabolic regulation. Rev. Aquat. Sci. 4:225-259.
  37. Mongeau, R., G. Sarwar, R. Brassard, and H. G. Botting. 1995. Effects of amylose and wheat bran on the levels of blood serum urea nitrogen (BUN), other blood parameters, growth and fecal characteristics in rats. Plant Foods Hum. Nutr. 48:95-105. https://doi.org/10.1007/BF01088304
  38. Moon, T. W. 2001. Glucose intolerance in teleost fish: fact or fiction? Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 129:243-249. https://doi.org/10.1016/S1096-4959(01)00316-5
  39. Noakes, M., P. M. Clifton, P. J. Nestel, R. L. Leu, and G. McIntosh. 1996. Effect of high-amylose starch and oat bran on metabolic variables and bowel function in subjects with hypertriglyceridemia. Am. J. Clin. Nutr. 64:944-951.
  40. Perez, J. M., and A. Aumaitre. 1979. Waxy versus regular maize: Energy value for growing pigs and utilization in piglet diets. Anim. Feed Sci. Technol. 4:109-115. https://doi.org/10.1016/0377-8401(79)90035-X
  41. Pirgozliev, V. R., S. P. Rose, and M. R. Bedford. 2010. The effect of amylose-amylopectin ratio in dietary starch on growth performance and gut morphology in broiler chickens. Arch. Geflugelkd. 74:S21-S29.
  42. Pirgozliev, V. R., S. P. Rose, and R. A. Graybosch. 2002. Energy and amino acid availability to chickens of waxy wheat. Arch. Geflugelkd. 66:108-113.
  43. Pirgozliev, V. R., S. P. Rose, P. S. Kettlewell, and M. R. Bedford. 2000. Relationship between chemical composition of wheat and broiler chicken growth performance. Brit. Poult. Sci. 41: S697-S698.
  44. Polakof, S., R. Álvarez, and J. L. Soengas. 2010. Gut glucose metabolism in rainbow trout: implications in glucose homeostasis and glucosensing capacity. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 299:R19-R32. https://doi.org/10.1152/ajpregu.00005.2010
  45. Rawles, S., and R. Lochmann. 2003. Effects of amylopectid-amylose starch ratio on growth, body composition and glycemic response of sunshine bass Morone chrysops ${\times}$M. saxatilis. J. World Aquacult. Soc. 34:278-288. https://doi.org/10.1111/j.1749-7345.2003.tb00066.x
  46. Shelton, J. L., J. O. Matthews, L. L. Southern, A. D. Higbie, T. D. Bidner, J. M. Fernandez, and J. E. Pontif. 2004. Effect of nonwaxy and waxy sorghum on growth, carcass traits, and glucose and insulin kinetics of growing-finishing barrows and gilts. J. Anim. Sci. 82:1699-1706.
  47. Shiau, S.-Y., and M.-J. Chen. 1993. Carbohydrate utilization by tilapia (Oreochromis niloticus${\times}$O. aureus) as influenced by different chromium sources. J. Nutr. 123:1747-1753.
  48. Shibanuma, K., Y. Takeda, S. Hizukuri, and S. Shibata. 1994. Molecular structure of some wheat starches. Carbohydr. Polym. 25:111-116. https://doi.org/10.1016/0144-8617(94)90146-5
  49. Solomon, S. G., L. O. Tiamiyu, and U. J. Agaba. 2007. Effect of feeding different grain sources on the growth performance and body composition of tilapia, (Oreochromis niloticus) fingerlings fed in outdoor hapas. Pakistan J. Nutr. 6:271-275. https://doi.org/10.3923/pjn.2007.271.275
  50. Spyridakis, P., R. Metailler, J. Gabaudan, and A.Riaza. 1989. Studies on nutrient digestibility in European sea bass (Dicentrarchus labrax): 1. Methodological aspects concerning faeces collection. Aquaculture 77:61-70. https://doi.org/10.1016/0044-8486(89)90021-5
  51. Stone, D. A. 2003. Dietary carbohydrate utilization by fish. Rev. Fish. Sci. 11:337-369. https://doi.org/10.1080/10641260390260884
  52. Suarez, M. D., A. Sanz, J. Bazoco, and M. Garcia-Gallego. 2002. Metabolic effects of changes in the dietary protein: carbohydrate ratio in eel (Angilla anguilla) and trout (Oncorhynchus mykiss). Aquacult. Int. 10:143-156. https://doi.org/10.1023/A:1021371104839
  53. Tan, Q., S. Xie, X. Zhu, W. Lei, and Y. Yang. 2006. Effect of dietary carbohydrate sources on growth performance and utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Gunther). Aquacult. Nutr. 12:61-70. https://doi.org/10.1111/j.1365-2095.2006.00382.x
  54. Weststrate, J. A., and J. M. M. van Amelsvoort. 1993. Effects of the amylose content of breakfast and lunch on postprandial variables in male volunteers. Am. J. Clin. Nutr. 58:180-186.
  55. Weurding, R. E., A. Veldman, W. A. G. Veen, P. J. van der Aar, and M. W. A. Verstegen. 2001. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens. J. Nutr. 131:2336-2342.
  56. Wilson, R. P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124:67-80. https://doi.org/10.1016/0044-8486(94)90363-8
  57. Yamamoto, T., T. Shima, H. Furuita, N. Suzuki, F. J. Sanchez-Vazquez, and M. Tabata. 2001. Self-selection and feed consumption of diets with a complete amino acid composition and a composition deficient in either methionine or lysine by rainbow trout Oncorhynchus mykiss (Walbaum). Aquac. Res. 32 (Suppl. 1):83-91. https://doi.org/10.1046/j.1355-557x.2001.00007.x
  58. Ye, J., K. Wang, F. Li, and Y. Sun. 2011. Single or combined effects of fructo-and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquac. Nutr. 17:e902-e911. https://doi.org/10.1111/j.1365-2095.2011.00863.x
  59. Yin, F., Y. Yin, Z. Zhang, M. Xie, J. Huang, R. Huang, and T. Li. 2011. Digestion rate of dietary starch affects the systemic circulation of lipid profiles and lipid metabolism-related gene expression in weaned pigs. Br. J. Nutr. 106:369-377. https://doi.org/10.1017/S0007114511000213
  60. Zhou, X., and M. L. Kaplan. 1997. Soluble amylose cornstarch is more digestible than soluble amylopectin potato starch in rats. J. Nutr. 127:1349-1356.
  61. Zobel, H. F. 1988. Molecules to granules: a comprehensive starch review. Starch-Starke 40:44-50. https://doi.org/10.1002/star.19880400203

Cited by

  1. Effects of dietary amylose/amylopectin ratio on growth performance, feed utilization, digestive enzymes, and postprandial metabolic responses in juvenile obscure puffer Takifugu obscurus vol.40, pp.5, 2014, https://doi.org/10.1007/s10695-014-9937-4
  2. Gastrointestinal tract development in fattening lambs fed diets with different amylose to amylopectin ratios vol.96, pp.3, 2016, https://doi.org/10.1139/cjas-2015-0165
  3. Growth performance, body composition, and digestive functionality of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles fed diets including microalgae freeze-dried biomass vol.44, pp.2, 2018, https://doi.org/10.1007/s10695-018-0462-8
  4. The Use of Dietary Additives in Fish Stress Mitigation: Comparative Endocrine and Physiological Responses vol.10, pp.None, 2019, https://doi.org/10.3389/fendo.2019.00447