DOI QR코드

DOI QR Code

Single Nucleotide Polymorphisms of NLRP12 Gene and Association with Non-specific Digestive Disorder in Rabbit

  • Liu, Yun-Fu (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Zhang, Gong-Wei (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Xiao, Zheng-Long (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Yang, Yu (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Deng, Xiao-Song (Sichuan Center of Green Food Development) ;
  • Chen, Shi-Yi (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Wang, Jie (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus) ;
  • Lai, Song-Jia (Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus)
  • 투고 : 2013.02.02
  • 심사 : 2013.04.08
  • 발행 : 2013.08.01

초록

The NLRP12 (NLR family, pyrin domain containing 12) serves as a suppressor factor in the inflammatory response and protects the host against inflammation-induced damage. In the present study, we aimed to study the polymorphisms of NLRP12 gene and its association with susceptibility to non-specific digestive disorder (NSDD) in rabbits. We re-sequenced the entire coding region of the rabbit NLRP12 gene and detected a total of 19 SNPs containing 14 synonymous and five non-synonymous variations. Among them, the coding SNP (c.1682A>G), which would carry a potential functional implication, was subsequently subjected to genotyping for case-control association study (272 cases and 267 controls). The results revealed that allele A was significantly protective against NSDD with an odds ratio value of 0.884 (95% confidence interval, 0.788 to 0.993; p = 0.038). We also experimentally induced NSDD in growing rabbits by feeding a fibre-deficient diet and subsequently investigated NLRP12 mRNA expression. The mRNA expression of NLRP12 in healthy status was significantly higher than that in severe NSDD (p = 0.0016). The highest expression was observed in individuals carrying the protective genotype AA (p = 0.0108). These results suggested that NLRP12 was significantly associated with the NSDD in rabbits. However, the precise molecular mechanism of NLRP12 involving in the development of rabbit NSDD requires further research.

키워드

참고문헌

  1. Allen, I. C., J. E. Wilson, M. Schneider, J. D. Lich, R. A. Roberts, J. C. Arthur, R. M. T. Woodford, B. K. Davis, J. M. Uronis, and H. H. Herfarth. 2012. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-${\kappa}B$ signaling. Immunity 36: 742-754. https://doi.org/10.1016/j.immuni.2012.03.012
  2. Arthur, J. C., J. D. Lich, Z. Ye, I. C. Allen, D. Gris, J. E. Wilson, M. Schneider, K. E. Roney, B. P. O'Connor, and C. B. Moore. 2010. Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J. Immunol. 185:4515-4519. https://doi.org/10.4049/jimmunol.1002227
  3. Bennegadi, N., T. Gidenne, and D. Licois. 2001. Impact of fibre deficiency and sanitary status on non-specific enteropathy of the growing rabbit. Anim. Res. 50:401-414. https://doi.org/10.1051/animres:2001135
  4. Carvalho, F. A, I. Nalbantoglu, J. D. Aitken, R. Uchiyama, Y. Su, G. H. Doho, M. Vijay-Kumar, and A. T. Gewirtz. 2012. Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol. 5:288-298. https://doi.org/10.1038/mi.2012.8
  5. Rochambeau, H. De., D. Licois, T. Gidenne, S. Verdelhan, P. Coudert, and J. M. Elsen. 2006. Genetic variability of the resistance for three types of enteropathy in the growing rabbit. Livest. Sci. 101: 110-115. https://doi.org/10.1016/j.livprodsci.2005.10.019
  6. Dewree, R., L. Meulemans, C. Lassence, D. Desmecht, R. Ducatelle, J. Mast, and D. Licois. 2007. Experimentally induced epizootic rabbit enteropathy: clinical, histopathological, ultrastructural, bacteriological and haematological findings. World Rabbit Sci. 15:91-102.
  7. Elinav, E., T. Strowig, A. L. Kau, J. Henao-Mejia, C. A. Thaiss, C. J. Booth, D. R. Peaper, J. Bertin, S. C. Eisenbarth, and J. I. Gordon. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745-757. https://doi.org/10.1016/j.cell.2011.04.022
  8. Hayashi, K.. 1991. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. Genome Res. 1: 34-38. https://doi.org/10.1101/gr.1.1.34
  9. Hayashi, K.. 1992. PCR-SSCP: a method for detection of mutations. Genet. Anal.: Biomol. Eng. 9:73-79. https://doi.org/10.1016/1050-3862(92)90001-L
  10. Hugot, J. P., M. Chamaillard, H. Zouali, S. Lesage, J. P. Cezard, J. Belaiche, S. Almer, C. Tysk, C. A. O'Morain, and M. Gassull. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599-603. https://doi.org/10.1038/35079107
  11. Jeru, I., G. Le Borgne, E. Cochet, H. Hayrapetyan, P. Duquesnoy, G. Grateau, A. Morali, T. Sarkisian, and S. Amselem. 2011. Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum. 63:1459-1464. https://doi.org/10.1002/art.30241
  12. Janeway, C. A. Jr, and R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  13. Jeru, I., P. Duquesnoy, T. Fernandes-Alnemri, E. Cochet, J. W. Yu, M. Lackmy-Port-Lis, E. Grimprel, J. Landman-Parker, V. Hentgen, and S. Marlin. 2008. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc. Natl. Acad. Sci. 105:1614-1619. https://doi.org/10.1073/pnas.0708616105
  14. Khare, S., A. Dorfleutner, N. B. Bryan, C. Yun, A. D. Radian, L. de Almeida, Y. Rojanasakul, and C. Stehlik. 2012. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464-476. https://doi.org/10.1016/j.immuni.2012.02.001
  15. Lich, J. D., K. L. Williams, C. B. Moore, J. C. Arthur, B. K. Davis, D. J. Taxman and J. P. Y. Ting. 2007. Cutting edge: Monarch-1 suppresses non-canonical NF-${\kappa}B$ activation and p52-dependent chemokine expression in monocytes. J. Immunol. 178:1256-1260. https://doi.org/10.4049/jimmunol.178.3.1256
  16. Licois, D. 2004. Domestic rabbit enteropathies. Proceedings of the eighth world rabbit congress. pp. 385-403.
  17. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT} $ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  18. Macaluso, F., M. Nothnagel, Q. Parwez, E. Petrasch‐Parwez, F. G. Bechara, J. T. Epplen and S. Hoffjan. 2007. Polymorphisms in NACHT‐LRR (NLR) genes in atopic dermatitis. Exp. Dermatol. 16:692-698. https://doi.org/10.1111/j.1600-0625.2007.00589.x
  19. Hasan Zaki Md., Peter Vogel, R. K. Malireddi, M. Body-Malapel, P. K. Anand, J. Bertin, D. R. Green, M. Lamkanfi, and T. D. Kanneganti. 2011. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20:649-660. https://doi.org/10.1016/j.ccr.2011.10.022
  20. Ogura, Y., D. K. Bonen, N. Inohara, D. L. Nicolae, F. F. Chen, R. Ramos, H. Britton, T. Moran, R. Karaliuskas and R. H. Duerr. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603-606. https://doi.org/10.1038/35079114
  21. Richards, N., P. Schaner, A. Diaz, J. Stuckey, E. Shelden, A. Wadhwa and D. L. Gumucio. 2001. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J. Biol. Chem. 276:39320-39329. https://doi.org/10.1074/jbc.M104730200
  22. Sole, X., E. Guino, J. Valls, R. Iniesta, and V. Moreno. 2006. SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928-1929. https://doi.org/10.1093/bioinformatics/btl268
  23. Tang, H., T. Quertermous, B. Rodriguez, S. L. R. Kardia, X. Zhu, A. Brown, J. S. Pankow, M. A. Province, S. C. Hunt, and E. Boerwinkle. 2005. Genetic structure, self-identified race/ ethnicity, and confounding in case-control association studies. Am. J. Hum. Genet. 76:268-275. https://doi.org/10.1086/427888
  24. Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak, R. Daverman, K. Diemer, A. Muruganujan, and A. Narechania. 2003. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13:2129-2141. https://doi.org/10.1101/gr.772403
  25. Thomas, P. D. and A. Kejariwal. 2004. Coding single-nucleotide polymorphisms associated with complex vs. Mendelian disease: evolutionary evidence for differences in molecular effects. Proc. Natl. Acad. Sci. USA. 101:15398-15403. https://doi.org/10.1073/pnas.0404380101
  26. Wang, L., G. A. Manji, J. M. Grenier, A. Al-Garawi, S. Merriam, J. M. Lora, B. J. Geddes, M. Briskin, P. S. DiStefano, and J. Bertin. 2002. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-${\kappa}B$ and caspase-1-dependent cytokine processing. J. Biol. Chem. 277:29874-29880. https://doi.org/10.1074/jbc.M203915200
  27. Wigginton, J. E., D. J. Cutler and G. R. Abecasis. 2005. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76:887-893. https://doi.org/10.1086/429864
  28. Williams, K. L., J. D. Lich, J. A. Duncan, W. Reed, P. Rallabhandi, C. Moore, S. Kurtz, V. M. N. Coffield, M. A. Accavitti-Loper, and L. Su. 2005. The CATERPILLER protein Monarch-1 is an antagonist of Toll-like receptor-, tumor necrosis factor ${\alpha}$-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J. Biol. Chem. 280:39914-39924. https://doi.org/10.1074/jbc.M502820200
  29. Williams, K. L., D. J. Taxman, M. W. Linhoff, W. Reed, and J. P. Y. Ting. 2003. Cutting edge: Monarch-1: a pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. J. Immunol. 170:5354-5358. https://doi.org/10.4049/jimmunol.170.11.5354
  30. Ye, Z., J. D. Lich, C. B. Moore, J. A. Duncan, K. L. Williams, and J. P. Y. Ting. 2008. ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol. Cell. Biol. 28:1841-1850. https://doi.org/10.1128/MCB.01468-07
  31. Ye, Z. and J. P. Y. Ting. 2008. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr. Opin. Immunol. 20:3-9. https://doi.org/10.1016/j.coi.2008.01.003
  32. Zhang, G. W., H. Z. Wang, S. Y. Chen, Z. C. Li, W. X. Zhang, and S. J. Lai. 2011. A reduced incidence of digestive disorders in rabbits is associated with allelic diversity at the TLR4 locus. Vet. Immunol. Immunopathol. 144:482-486. https://doi.org/10.1016/j.vetimm.2011.08.009
  33. Zhang, W. X., G. W. Zhang, J. Peng, J. L. Zhang, Y. Yang, and S. J. Lai. 2013. A synonymous mutation in NOD2 gene was significantly associated with non-specific digestive disorder in rabbit. Gene 516:193-197. https://doi.org/10.1016/j.gene.2012.12.091

피인용 문헌

  1. Investigation of significant microRNA-mRNA pairs associated with nonspecific digestive disorder in rabbits vol.25, pp.4, 2017, https://doi.org/10.4995/wrs.2017.6839
  2. Genome-wide association study of Stayability and Heifer Pregnancy in Red Angus cattle vol.96, pp.3, 2018, https://doi.org/10.1093/jas/sky041
  3. Investigation of genetic susceptibility to nonspecific digestive disorder between TYK2, JAK1, and STAT3 genes in rabbits vol.181, pp.None, 2013, https://doi.org/10.1016/j.livsci.2015.08.014