나프탈렌에 노출된 조피볼락의 생존 및 아가미의 조직학적 변화

Survival and Histological Changes in Gill of the Rockfish, Sebastes schlegeli Following Exposure to Naphthalene

  • 조재권 (국립수산과학원 남서해수산연구소) ;
  • 김태익 (국립수산과학원 남서해수산연구소) ;
  • 손맹현 (국립수산과학원 남서해수산연구소) ;
  • 김경민 (국립수산과학원 남서해수산연구소) ;
  • 진영국 (국립수산과학원 남서해수산연구소)
  • 투고 : 2013.02.20
  • 심사 : 2013.03.20
  • 발행 : 2013.03.31

초록

나프탈렌이 조피볼락의 생존과 아가미의 조직학적 변화에 미치는 영향을 관찰하였다. 실험에 사용된 조피볼락은 전장 $10.36{\pm}0.49cm$, 전중 $16.28{\pm}1.86g$, 270개체이며, 실험기간은 28일이었다. 실험농도는 6개 농도구를 설정하였다(대조구, 에탄올(solvent) 대조구, 0.5, 1.0, 1.5, 2.0 mg Nap $L^{-1}$). 실험기간 동안 사망개체를 매일 파악하여 생존율로 환산하였으며, 실험 종료 후 생존개체의 아가미는 조직표본 제작 후 조직손상의 정도(degree of tissue change (DTC))를 파악하였다. 생존율은 대조구, 에탄올 대조구, 0.5 및 1.0 mg Nap $L^{-1}$에 노출된 개체들은 90% 이상을 나타냈다. 1.5 및 2.0 mg Nap $L^{-1}$에 노출된 개체들은 노출 후 약 20일부터 급격히 감소하여 각각 80%와 62.2%를 나타냈다. 아가미의 조직학적 변화는 새엽 및 새판 상피세포의 증식이 대조구를 포함해 전 노출 농도구에서 관찰되었으며, 농도 증가에 따른 DTC의 증가는 나타나지 않았다. 하지만, 새판 상피층의 탈락 및 융합, 새판 모세혈관 확장, 울혈, 동맥류 및 괴사는 농도의존적 증가를 보였다. 특히 새판의 융합, 모세혈관 확장 및 울혈은 1.0 mg Nap $L^{-1}$ 이상의 농도에서 관찰되었으며, 동맥류와 괴사는 1.5 mg Nap $L^{-1}$ 이상의 농도에서만 관찰되었다. 이와 같은 결과는 생존율의 감소와 아가미의 조직학적 변화가 밀접한 관련이 있으며, 나프탈렌의 독성영향을 결정하는데 있어 DTC의 유용성을 보여준다.

Rockfish, Sebastes schlegeli (total length; $10.36{\pm}0.49cm$, total weight; $16.28{\pm}1.86g$, N; 290) were exposed to various concentrations of naphthalene for 28 days. Exposure concentrations of naphthalene established control, ethanol (solvent) control, 0.5, 1.0, 1.5 and 2.0 mg Nap $L^{-1}$. After exposure, We observed survival rate, and degree of tissue change (DTC) in gill under optical microscopy. Survival rate of the rockfish was more than 90% in control, ethanol control, 0.5 and 1.0 mg Nap $L^{-1}$, whereas it decreased in 1.5 and 2.0 mg Nap $L^{-1}$ (respectively 80%, 62.2%). In histological observation of gill, hyperplasia of epithelial cells observed in all exposure groups. But no showed increase of DTC which was related to concentration. Whereas, DTC at fusion of gill lamellar, lamellar telangiectasia, stasis, aneurysm and necrosis showed dose dependent increase. Especially, fusion of gill lamellar, lamellar telangiectasia and stasis observed at more 1.0 mg Nap $L^{-1}$, and aneurysm and necrosis at more 1.5 mg Nap $L^{-1}$. These results showed naphthalene caused survival and severe change to the gill of the rockfish which was related to exposure concentration.

키워드

과제정보

연구 과제번호 : 능성어 대량종묘생산 기술개발

연구 과제 주관 기관 : 국립수산과학원

참고문헌

  1. Arellano, J.M., V. Storch and C. Sarasquete. 1999. Histological changes and copper accumulation in liver and gills of the senegales sole, Solea senegalensis. Ecotoxicol. Environ. Saf., 44: 62-77. https://doi.org/10.1006/eesa.1999.1801
  2. Black, M.C., D.S. Millsap and J.F. McCarthy. 1991. Effects of acute temperature change on respiration and toxicant uptake by rainbow trout, Salmo gairdneri. Physiol. Zool., 64: 145-168. https://doi.org/10.1086/physzool.64.1.30158517
  3. DeGraeve, G.M., R.G. Elder, D.C. Woods and H.L. Bergman. 1982. Effects of naphthalene and benzene on fathead minnow and rainbow trout. Arch. Environ. Contam. Toxicol., 11: 487-490. https://doi.org/10.1007/BF01056076
  4. DiMichele, L. and M.H. Taylor. 1978. Histopathological and physiological responses of Fundulus heteroclitus to naphthalene exposure. J. Fish. Res. Board Canada, 35: 1060-1066. https://doi.org/10.1139/f78-169
  5. Du Preez, H.H., A. McLachlan, J.F.K. Marais and A.C. Cockcroft. 1990. Bioenergetics of fishes in a high-energy surf-zone. Mar. Biol., 106: 1-12. https://doi.org/10.1007/BF02114669
  6. Fanta, E., F.S. Rios, S. Romao, A.C.C. Vianna and S. Freiberger. 2003. Histopathology of the fish, Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol. Environ. Saf., 54: 119-130. https://doi.org/10.1016/S0147-6513(02)00044-1
  7. Heitmuller, P.T., T.A. Hollister and P.R. Parrish. 1981. Acute toxicity of 54 industrial chemicals to sheepshead minnow, Cyprinodon variegatus. Bull. Environ. Contam. Toxicol., 27: 596-604.
  8. Mallatt, J. 1985. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can. J. Fish. Aquat. Sci., 42: 630-648. https://doi.org/10.1139/f85-083
  9. Muller, R. and R. Lloyd. 1994. Sublethal and chronic effects of pollutants on freshwater fish. Oxford. Oxford Blackwell Scentific.
  10. Nagabhushanam, R., P.R. Machale, R.V. Kkatyayani, P.S. Peddy and R. Sarojini. 1991. Erythrophoretic responses induced by naphthalene in freshwater prawn, Caridina rajadhari. J. Ecotoxicol. Environ. Monit., 1: 185-191.
  11. Nandini, N.D. 1988. Effect of chronic exosure of speckled prawn, Metapenaeus monoceros to naphthalene. Indian J. Fish., 35: 226-228.
  12. Poleksic, V. and V. Mitrovic-Tutundzic. 1994. Fish gills as monitor of sublethal and chronic effects of pollution. In: Muller, R. and R. Lloyd. (eds.), Sublethal and chronic effects of pollutants on freshwater fish. Fishing News Books, Oxford, pp. 339-352.
  13. Polino, C.A. and D.A. Holdway. 2002. Toxicity testing of crude oil and related comounds using early life stages of the crimsonspotted rainbowfish, Melanotaenia fluviatilis. Ecotoxicol. Environ. Saf., 52: 180-189. https://doi.org/10.1006/eesa.2002.2190
  14. Polino, C.A., E. Georgiades and D.A. Haldway. 2009. Physiological changes in reproductively active rainbow fish, Melanotaenia fluviatilis following exposure to naphthalene. Ecotoxicol. Environ. Saf., 72: 1265-1270. https://doi.org/10.1016/j.ecoenv.2009.01.012
  15. Prasad, M.S. 1991. SEM study on the effects of crude oil on the gills and airbreathing organs of climbing perch, Anagas testudineus. Bull. Environ. Contam. Toxicol., 47: 882-889. https://doi.org/10.1007/BF01689519
  16. Rodrigues, E.L. and E. Fanta. 1998. Liver histopathlogy of the fish, Brachydanio rerio after acute exposure to sublethal levels of the organophosphate dimethoate 500. Rev. Bras. Zool., 15: 441-450. https://doi.org/10.1590/S0101-81751998000200014
  17. Santos, T.C.A., V.N. Phan, M.J.A.C.R. Passos and V. Gomes. 2006. Effects of naphthalene on metabolic rate and ammonia excretion of juvenile Florida Pompano, Trachinotus carolinus. J. Exper. Mar. Biol. Ecol., 335: 82-90. https://doi.org/10.1016/j.jembe.2006.02.019
  18. Schwaiger, J., R. Wanke, S. Adam, M. Pawert, W. Honnen and R. Triebskorn. 1997. The use of histopathological indicators to evaluate contaminant related stress in fish. J. Aquat. Ecosyst. Stress Recovery, 6: 75-86. https://doi.org/10.1023/A:1008212000208
  19. Segers, J.H.L., J.H.M. Temmink, J.H.J.Van den Berg and R.C.C. Wegman. 1984. Morphological changes in gill of carp, Cyprinus carpio exposed to acutel toxic concentration of methyl bromide. Water Research, 18: 1437-1441. https://doi.org/10.1016/0043-1354(84)90014-9
  20. Simonato, J.D., C.L.B. Guedes and C.B.R. Martinez. 2008. Biochemical, physiological, and histological changes in the neotropical fish, Prochilodus lineatus exposed to diesel oil. Ecotoxicol. Environ. Saf., 69: 112-120. https://doi.org/10.1016/j.ecoenv.2007.01.012
  21. Spies, R.B., J.J. Stegeman, D.E. Hinton, B. Woodin, R. Smolowitz, M. Okihiro and D. Shea. 1996. Biomarkers of hydrocarbon exposure and sublethal effects in embiotocid fishes from a natural petroleum seep in the Santa Barbara Chanel. Aquat. Toxicol., 34: 195-219. https://doi.org/10.1016/0166-445X(95)00039-7
  22. Temmink, J., P. Bowmieister, P. Jong and J. Van der Berg. 1983. An ultrastructural study of chromate-induced hyperplasia in the gill of rainbow trout, Salmo gairdneri. Aquatic Toxicol., 4: 165-179. https://doi.org/10.1016/0166-445X(83)90053-X
  23. Temmink, J.H.M., J.A. Field, J.C. Van Haastrecht and R.C.M. Merkelbach. 1989. Acute and subacute toxicity of bark tannings in carp, Cyprinus carpio. Water Res., 23: 341-344. https://doi.org/10.1016/0043-1354(89)90100-0
  24. Vijayavel, K. and M.P. Balasubramanian. 2006. Changes in oxygen consumption and respiratory enzymes as stress indicators in an estuarine edible crab, Scylla serrata exposed to naphthalene. Chemosphere, 63: 1253-1531.
  25. Vijayavel, K., R.D. Gomathi, K. Durgabhavani and M.P. Balasubramanian. 2004. Sublethal effect of naphthalene on lipid peroxidation and antioxidation status in the edible marine crab, Scylla serrata. Mar. Poll. Bull., 48: 429-433. https://doi.org/10.1016/j.marpolbul.2003.08.017
  26. Wake, H. 2005. Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine Coastal She. Sci., 62: 131-140. https://doi.org/10.1016/j.ecss.2004.08.013