DOI QR코드

DOI QR Code

CFP Scheduling for Real-Time Service and Energy Efficiency in the Industrial Applications of IEEE 802.15.4

  • Ding, Yuemin (Department of Electronics and System Engineering, Hanyang University) ;
  • Hong, Seung Ho (Department of Electronics and System Engineering, Hanyang University)
  • Received : 2012.02.24
  • Accepted : 2012.09.11
  • Published : 2013.02.28

Abstract

In industrial applications, sensor networks have to satisfy specified time requirements of exchanged messages. IEEE 802.15.4 defines the communication protocol of the physical and medium access control layers for wireless sensor networks, which support real-time transmission through guaranteed time slots (GTSs). In order to improve the performance of IEEE 802.15.4 in industrial applications, this paper proposes a new traffic scheduling algorithm for GTS. This algorithm concentrates on time-critical industrial periodic messages and determines the values of network and node parameters for GTS. It guarantees real-time requirements of periodic messages for industrial automation systems up to the order of tens to hundreds of milliseconds depending on the traffic condition of the network system. A series of simulation results are obtained to examine the validity of the scheduling algorithm proposed in this study. The simulation results show that this scheduling algorithm not only guarantees real-time requirements for periodic message but also improves the scalability, bandwidth utilization, and energy efficiency of the network with a slight modification of the existing IEEE 802.15.4 protocol.

Keywords

References

  1. M. Bertocco, G. Gamba, A. Sona, and S. Vitturi, "Experimental characterization of wireless sensor networks for industrial applications," IEEE Trans. Instrum. Meas., vol. 57, no. 8, pp. 1537-1546, Aug. 2008.
  2. K. Gill, S. H. Yang, F. Yao, and X. Lu, "A Zigbee-based home automation system," IEEE Trans. Consum. Electron., vol. 55, no. 2, pp. 422-430, May 2009. https://doi.org/10.1109/TCE.2009.5174403
  3. S. H. Lee, S. Lee, H. Song, and H. S. Lee, "Wireless sensor network design for tactical military applications: Remote large-scale environments," in Proc. MILCOM, Oct. 2009.
  4. Y. Kim, R. G. Evans, and W. M. Iversen, "Remote sensing and control of an irrigation system using a distributed wireless sensor network," IEEE Trans. instrum. Meas., vol. 57, no. 7, pp. 1379-1387, July 2008. https://doi.org/10.1109/TIM.2008.917198
  5. J. M. Corchado, J. Bajo, D. I. Tapia, and A. Abraham, "Using heterogeneous wireless sensor networks in a telemonitoring system for healthcare," IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp. 234-240, Mar. 2010. https://doi.org/10.1109/TITB.2009.2034369
  6. V. C. Gungor and G. P. Hancke, "Industrial wireless sensor networks: Challenges, design principles, and technical approaches," IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4258-4265, Oct. 2009. https://doi.org/10.1109/TIE.2009.2015754
  7. IEEE Standard for Information Technology Part 15.4: Wireless medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), IEEE standard 802.15.4- 2006, Sept. 2006.
  8. J. S. Lee, "Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks," IEEE Trans. Consum. Electron., vol. 52, no. 3, pp. 742-749, Aug. 2006. https://doi.org/10.1109/TCE.2006.1706465
  9. C. Buratti and R. Verdone, "Performance analysis of IEEE 802.15.4 non beacon-enabled mode," IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3480-3493, Sept. 2009. https://doi.org/10.1109/TVT.2009.2014956
  10. L. Angrisani, M. Bertocco, D. Fortin, and A. Sona, "Experimental study of coexistence issues between IEEE 802.11b and IEEE 802.15.4 wireless networks," IEEE Trans. Instrum. Meas., vol. 57, no. 8, pp. 1514-1523, Aug. 2008. https://doi.org/10.1109/TIM.2008.925346
  11. H. W. Tseng, A. C. Pang, J. Chen, and C. F. Kuo, "An adaptive contention control strategy for IEEE 802.15.4-based wireless sensor networks," IEEE Trans Veh. Technol., vol. 58, no. 9, pp. 5164-5173, Nov. 2009. https://doi.org/10.1109/TVT.2009.2023791
  12. T. R. Park and M. J. Lee, "Power saving algorithms for wireless sensor networks on IEEE 802.15.4," IEEE Commun. Mag., vol. 46, no. 6, pp. 148-155, June 2008.
  13. L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, "An energyefficient error correction scheme for IEEE 802.15.4 wireless sensor networks," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 3, pp. 233-237, Mar. 2010. https://doi.org/10.1109/TCSII.2010.2043379
  14. A. Koubaa, M. Alves, and E. Tovar, "GTS allocation analysis in IEEE 802.15.4 for real-time wireless sensor networks," in Proc. IEEE IPDPS, Apr. 2006.
  15. A. Koubaa, M. Alves, and E. Tovar, "i-GAME: An implicit GTS allocation mechanism in IEEE 802.15.4 for time-sensitive wireless sensor networks," in Proc. ECRTS, July 2006.
  16. H. S. Kim, J. H. Song, and S. Lee, "Energy-efficient traffic scheduling in IEEE 802.15.4 for home automation network," IEEE Trans. Consum. Electron., vol. 53, no. 2, pp. 369-374, May 2007. https://doi.org/10.1109/TCE.2007.381703
  17. Y. K. Huang, A. C. Pang, and H. N. Hung, "An adaptive GTS allocation scheme for IEEE 802.15.4," IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 5, pp. 641-651, May 2008. https://doi.org/10.1109/TPDS.2007.70769
  18. C. Na, Y. Yang, and A. M, "An optimal GTS scheduling algorithm for time-sensitive transactions in IEEE 802.15.4 networks," Comput. Netw., vol. 52, no. 13, pp. 2543-2557, Sept. 2008. https://doi.org/10.1016/j.comnet.2008.05.012
  19. S. Yoo, P. Chong, D. Kim, Y. Doh, M. Pham, E. Choi, and J. Huh, "Guaranteeing real-time services for industrial wireless sensor networks with IEEE 802.15.4," IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3868- 3876, Feb. 2010. https://doi.org/10.1109/TIE.2010.2040630
  20. Z. Hanzalek and P.Jurcik, "Energy efficient scheduling for cluster-tree wireless sensor networks with time-bounded data flows: Application to IEEE 802.15.4/ZigBee," IEEE Trans. Ind. Informat., vol. 6, no. 3, pp.438-450, Aug. 2010. https://doi.org/10.1109/TII.2010.2050144
  21. Industrial communication networks - Wireless communication network and communication profiles - WirelessHARTTM, IEC 62591 ed1.0, Apr. 2010.
  22. Wireless Systems for Industrial Automation: Process Control and Related Applications, ISA-100.11a-2009, 2009.
  23. Industrial communication networks - Fieldbus specifications - WIA-PA communication network and communication profile, IEC 62601 ed1.0, Nov. 2011.
  24. IEEE Standard for Local and metropolitan area networks - Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer, IEEE standard 802.15.4e-2012, Apr. 2012.
  25. S. H. Hong, "Scheduling algorithm of data sampling times in the integrated communication and control system," IEEE Trans. Contr. Syst. Technol., vol. 3, no. 2, pp. 225-230, June 1995. https://doi.org/10.1109/87.388131
  26. P. Jurcik, A. Koubaa, M. Alves, E. Tovar, and Z. Hanzalek, "A simulation model for the IEEE 802.15.4 protocol: Delay/throughput evaluation of the GTS mechanism," in Proc. MATCOTS, Oct. 2007.
  27. Texas Instruments, CC2520 DATASHEET, 2007.
  28. S. H. Hong and J. H. Lee "A bandwidth allocation scheme in fieldbuses," Int. J. of Cont. Autom. Syst., vol. 8, no. 4, pp.831-840, Aug. 2010. https://doi.org/10.1007/s12555-010-0415-1