DOI QR코드

DOI QR Code

Active Control of Impinging Jets Using Bifurcating Excitations

분기 가진을 통한 충돌제트 능동 제어 연구

  • Kim, Jungwoo (Seoul National University of Science and Technology, Department of Mechanical System Design)
  • Received : 2013.03.29
  • Accepted : 2013.05.19
  • Published : 2013.06.15

Abstract

The objective of the present study is to investigate the heat transfer characteristics of turbulent impinging jets with bifurcating excitations. Bifurcating excitations use the dual mode, dual frequency forcing, where an axial forcing frequency is equal to double the helical forcing frequency. Under the bifurcating excitation, the heat transfer significantly increases in one plane (bifurcating plane), while nearly no heat transfer occurs in the perpendicular plane (bisecting plane). This result is closely associated with the change in the vortical structures caused by the excitation.

Keywords

References

  1. Martin, H., 1977, Heat and mass between impinging gas jets and solid surfaces, Advances in Heat Transfer, 13 1-60. https://doi.org/10.1016/S0065-2717(08)70221-1
  2. Jambunathan, K., Lai, E., Moss, M. A., Button, B. L., 1992, A review of heat transfer data for single circular jet impingement, Int. J. Heat Fluid Flow, 13 106-115. https://doi.org/10.1016/0142-727X(92)90017-4
  3. Gardon, R., Arkifirat, J. C., 1965, The role of turbulence in determining the heat transfer characteristics of impinging jet, Int. J. Heat Mass Transfer, 8 1261-1272. https://doi.org/10.1016/0017-9310(65)90054-2
  4. Lytle, D., Webb, B. W., 1994, Air jet impinging heat transfer at low nozzle-plate spacings, Int. J. Heat Mass Transfer, 37 1687-1697. https://doi.org/10.1016/0017-9310(94)90059-0
  5. Lee, D., Grief, R., Lee, S. J., Lee, J. H., 1995, Heat transfer from a flat plate to a fully developed axisymmetric impinging jet, J. Heat Transfer, 117 772-776. https://doi.org/10.1115/1.2822647
  6. Behnia, M., Parneix, S., Durbin, P. A., 1998, Prediction of heat transfer in an axisymmetric turbulent impinging on a flat plate, Int. J. Heat Mass Transfer, 41 1845-1855. https://doi.org/10.1016/S0017-9310(97)00254-8
  7. Park, T., Sung, H., 2001, Development of a near-wall turbulence model and application to jet impingement heat transfer, Int. J. Heat Fluid Flow, 22 10-18. https://doi.org/10.1016/S0142-727X(00)00069-2
  8. Olsson, M., Fuchs, L., 1998, Large eddy simulations of a forced semiconfined circular impinging jet, Phys. Fluids, 10 476-486. https://doi.org/10.1063/1.869535
  9. Hadziabdic, M., Hanjalic, K., 2008, Vortical structures and heat transfer in a round impinging jet, J. Fluid Mech., 596 221-260.
  10. Lee, M., Reynolds, W. C., 1985, Bifurcating and blooming jets, Report No. TF-22, Department of Mechanical Engineering, Stanford University, USA.
  11. Parekh, D., Leonard, A., Reynolds, W. C., 1988, Bifurcating jets at high Reynolds numbers, Report No. TF-35, Department of Mechanical Engineering, Stanford University, USA.
  12. Reynolds, W. C., Parekh, D. E., Juvet, P. J. D., Lee, M. J. D., 2003, Bifurcating and bisecting jets, Annu. Rev. Fluid Mech., 35 293-315.
  13. Germano, W. K., Piomeilli, U., Moin, P., Cabot, W. H., 1991, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3 1760-1765. https://doi.org/10.1063/1.857955
  14. Lilly, D. K., 1992, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, 4 633-635. https://doi.org/10.1063/1.858280
  15. Moin, P., Squires, K. Cabot, W., Lee, S., 1991, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A, 3 2746-2757. https://doi.org/10.1063/1.858164
  16. White, F. M., 1994, Fluid Mechanics, McGraw-Hill Co., Singapore.
  17. Akselvoll, K., Moin, P., 1996, An efficient method for temporal integration of the Navier-Stokes equations in confined axisymmetric geometries, J. Comput. Phys., 125 454-463. https://doi.org/10.1006/jcph.1996.0107
  18. Koren, B., 1993, A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhill, C.B., Koren, B. (Eds.), Numerical methods for advection-diffusion problems, Notes on numerical fluid mechanics, 45, Vieweg, Braunschweig, 117-138.
  19. Cho, S. K., Yoo, J. Y.. Choi, H., 2000, Resonance in axisymmetric jet under controlled helical, fundamental, and axisymmetric subharmonic forcing, AIAA J., 38 434-441. https://doi.org/10.2514/2.1002
  20. Danaila, I., Boersma, B. J., 2000, Direct numerical simulation of bifurcating jet, Phys. Fluids, 12 1255-1257. https://doi.org/10.1063/1.870377
  21. da Silva, C. B., Metais, O., 2002, Vortex control of bifurcating jets: a numerical study, Phys. Fluids, 14 3798-3819. https://doi.org/10.1063/1.1506922
  22. Lee, J., Lee, S.-J., 2000, The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet, Int. J. Heat Mass Transfer, 43 555-575. https://doi.org/10.1016/S0017-9310(99)00167-2