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THE EQUIVALENCE CONDITIONS FOR

SEMIALGEBRAICALLY PROPER MAPS

Dae Heui Park

Abstract. In this paper we compare the notion of proper map
in the category of topological spaces with that in the category of
semialgebraic sets. To do this, we find some equivalence conditions
for semialgebraically proper maps. In particular, we prove that
a continuous semialgebraic map is semialgebraically proper if and
only if it is proper. Moreover, we compare the semialgebraically
proper map with the proper map in the sense of Delfs and Knebush
[4].

1. Introduction

The purpose of this paper is to compare the notion of proper map in
the category of topological spaces with that in the category of semialge-
braic sets.

A semialgebraic set is a subset of Rn defined by finite number of
polynomial equations and inequalities. More precisely, a subset X of
Rn is semialgebraic if and only if there exist polynomials fij and gij for
i = 1, . . . , p and j = 1, . . . , q such that

X =

p⋃
i=1

{x ∈ Rn | fij(x) > 0, gij(x) = 0 for all j = 1, . . . , q}.

Throughout this paper we consider semialgebraic sets in Rn equipped
with the subspace topology induced by the usual topology of Rn. A
semialgebraic space is an object obtained by pasting finitely many semi-
algebraic sets together along open semialgebraic subsets. Usually, a
semialgebraic set in Rn is called an affine semialgebraic space over the
real numbers. Since the topology of a semialgebraic space induced by
those of finitely many semialgebraic sets, the topologies of semialgebraic
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spaces are of no interest. For this reason, in this paper we will only treat
the semialgebraic sets in Rn.

A map f : X → Y between semialgebraic sets X ⊂ Rm and Y ⊂ Rn
is called semialgebraic if its graph is a semialgebraic set in Rm+n.

In this paper we find the equivalence conditions for semialgebraically
proper maps. Let X and Y be semialgebraic sets. A semialgebraic map
f : X → Y is called semialgebraically closed if f maps every closed semi-
algebraic subset of X to a closed semialgebraic subset of Y . Similarly, f
is called semialgebraically proper if the preimage f−1(C) is compact for
every compact semialgebraic subset C of Y . Since C should be semial-
gebraic in the definition, this notion is weaker than the condition that f
is proper. However, in this paper, we prove the following two theorems.

Theorem 1.1. Let X and Y be semialgebraic sets, and let f : X → Y
be a semialgebraic map. Suppose f is continuous. Then the following
are equivalent:

(1) f is semialgebraically proper;
(2) f is semialgebraically closed and its fibers are compact.

Theorem 1.2. Let X and Y be semialgebraic sets, and let f : X → Y
be a semialgebraic map. Suppose f is continuous. Then the following
are equivalent:

(1) f is semialgebraically proper;
(2) f is proper.

This paper is organized as follows. In Section 2 we develop the theory
of semialgebraically proper maps. It also contains the proofs of Theo-
rems 1.1 and 1.2. In Section 3 we compare the semialgebraically proper
map with the “proper” map in the sense of Delfs and Knebush [4].

2. Semialgebraically proper maps

In this section we find the equivalence conditions for semialgebraically
proper maps. It also contains the proofs of Theorems 1.1 and 1.2.

We first introduce well known facts on proper maps without proofs.
For the details, we refer the reader to [2] and [5].

Let X and Y be a topological spaces, and f : X → Y a map which
is not necessarily continuous. f is called proper if the preimage of each
compact subset of Y is compact. f is called closed if the image of each
closed subset of X is closed in Y .
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Proposition 2.1. Let X and Y be topological spaces. If f : X → Y
is a closed map with compact fibers, then f is proper.

A topological space is called compactly generated if it has the following
property: if A is any subset of X whose intersection with each compact
subset K of X is closed in K, then A is closed in X.

It is well known fact that first countable spaces and locally compact
spaces are compactly generated. Moreover, metric spaces, manifolds,
and subsets of manifolds are compactly generated.

Proposition 2.2. Let X be a topological space and Y a compactly
generated Hausdorff space. If f : X → Y is a continuous proper map,
then f is a closed map.

We now gather some properties concerning semialgebraic sets and
maps without proof. For the details, we refer the reader to [1] and [4].

It is well known that finite union, finite intersection, and the cartesian
product of semialgebraic sets are also semialgebraic. The composition
of two semialgebraic maps is also semialgebraic. Moreover, the image
and the preimage of a semialgebraic subset by a semialgebraic map are
semialgebraic. In particular, let X and Y be semialgebraic sets, then
the projection p : X × Y → X defined by p(x, y) = x is semialgebraic.

Proposition 2.3. Let X be a semialgebraic set.

(1) If A is a semialgebraic subset of X, then the closure A, the com-
plement Ac and the interior A◦ in X are semialgebraic.

(2) If V is a neighborhood of a point x in X, then there is a semial-
gebraic neighborhood U of X with x ∈ U ⊂ V .

The following is an almost immediate consequence of the definitions.

Lemma 2.4. Let X and Y be semialgebraic sets, and let f : X → Y
be a semialgebraically proper map.

(1) For a closed semialgebraic subset A of X, the restriction
f |A : A→ f(A) is semialgebraically proper.

(2) For a semialgebraic subset B of Y , the restriction
f |f−1(B) : f−1(B)→ B is semialgebraically proper.

(3) If A is a semialgebraic subset of X such that A = f−1(f(A)), then
the restriction f |A : A→ f(A) is semialgebraically proper.

As a sequence plays an important role in the category of metric
spaces, a curve germ plays in the semialgebraic category, see [1] or [3].
A curve germ in a semialgebraic set X is represented by a “continuous”
semialgebraic map α : (0, ε] → X for some ε > 0. Two curve germs are
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considered the same if, after possible reparameterization of the intervals,
they agree on a common subinterval (0, δ] for some δ > 0. Thus, a curve
germ is determined by the collection of images sets α((0, ε]) ⊂ X for
ε > 0. If a curve germ α extends to a continuous map α : [0, ε]→ X, we
say the extension is the completion of α, and α is completable. We write
α→ x if α has a completion with α(0) = x.

If α : (0, ε]→ X has a completion with α→ x, then given any neigh-
borhood U of x in X, by restricting to a smaller interval whenever
necessary, we may assume that α([0, ε]) ⊂ U .

We state the following elementary propositions because it will be used
in this paper.

Proposition 2.5 ([3, p.73]). Let X and Y be semialgebraic sets.

(1) Every curve germ in a compact semialgebraic set has a completion.
(2) If x belongs to the closure of a semialgebraic subset A of X, then

there is a curve germ α in A with α→ x.
(3) Every curve germ in X ∪ Y is a curve germ in either X or Y .

From now on, X and Y denote semialgebraic sets.

Proposition 2.6 ([3, p.73]). Let f : X → Y be a semialgebraic map.

(1) If f : X → Y is surjective, then every curve germ α in Y lifts to a
curve germ α̃ in X, that is f ◦ α̃ = α.

(2) f is continuous if and only if for any completable curve germ α in
X with α→ x, the curve germ f ◦α is also completable in Y with
f ◦ α→ f(x).

(3) If f is semialgebraically proper, then for any curve germ α̃ in X
such that f ◦ α̃ is completable in Y is completable in X. Moreover,
the converse holds if f is continuous.

As in the category of topological spaces, we have the following propo-
sition.

Proposition 2.7. Let X be a semialgebraic set. Then the following
are equivalent:

(1) X is compact;
(2) for any semialgebraic set Y , the projection p : X ×Y → Y defined

by p(x, y) = y is semialgebraically closed;
(3) the projection p : X × I → I defined by p(x, y) = y is semialge-

braically closed, where I denotes the unit interval [0, 1] equipped
with the subspace topology induced by the usual topology of R.
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Proof. It suffices to show that (3) implies (1). Suppose X is not
compact. We can find a continuous semialgebraic map α : [0, 1) → X
such that the image α([0, 1)) is semialgebraic and closed in X. Then
the set A = {(α(t), t) | 0 5 t < 1} is semialgebraic and closed in X × I.
But the image p(A) = [0, 1) is not closed in I. It follows that p is not
semialgebraically closed. This completes the proof.

Propositions 2.1 and 2.2 are still valid in the semialgebraic category
as in the following two propositions. We remark that all semialgebraic
sets are metric spaces and therefore compactly generated Hausdorff.

Proposition 2.8. Let f : X → Y be a semialgebraic map. If f is
a semialgebraically closed map with compact fibers, then f is semialge-
braically proper.

Proof. Let K be a compact semialgebraic subset of Y . Let {Uα | α ∈
Λ} be a cover of f−1(K) by open subsets of X. For x ∈ Uα we can take
an open semialgebraic set Wα,x such that x ∈ Wα,x ⊂ Uα. Then the
collection B = ∪α∈Λ{Wα,x | x ∈ Uα} is a refinement of {Uα | α ∈ Λ}. It
suffices to show that f−1(K) is covered by finitely many of the sets in
B.

For y ∈ K, the fiber f−1(y) is compact, so it is covered by finitely
many of the sets in B. In other words, for y ∈ K, there is a finite subset
By of B such that f−1(y) ⊂ ∪W∈ByW . Then the set Cy = X \ ∪W∈ByW
is closed and semialgebraic in X and disjoint from f−1(y). Since f is
semialgebraically closed, the set Vy = Y \f(Cy) is open and semialgebraic
in Y and contains y. It is easy to check that f(Vy) ⊂ ∪W∈ByW and that
{Vy | y ∈ K} is a cover of K. Because K is compact, it is covered by
finitely many of the sets Vy. Thus f−1(K) is covered by finitely many
sets of the form f−1(Vy), each of which is covered by finitely many of
the sets in B, so it follows that f−1(K) is compact.

Proposition 2.9. Let f : X → Y be a semialgebraic map. Suppose
f is continuous. If f is semialgebraically proper, then f is semialge-
braically closed.

Proof. Let f be a semialgebraically proper map which is continuous.
Suppose C is closed and semialgebraic in X. Clearly, the image f(C)
is semialgebraic in Y . It suffices to show that f(C) is closed in Y . Let

f(C) denote the closure of f(C) in Y . Given y ∈ f(C), it follows from
Proposition 2.5(2) that there exists a curve germ α in f(C) with α→ y.
Since the restriction f |C : C → f(C) is surjective, by Proposition 2.6(1),
there is a curve germ α̃ in C such that f ◦ α̃ = α. By Proposition 2.6(3),
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α̃ is completable in X. Let α̃→ x, then x ∈ C because C is closed in X.
By Proposition 2.6(2), α = f ◦ α̃ → f(x), and hence y = f(x) ∈ f(C).
Therefore f(C) is closed in Y .

From Propositions 2.8 and 2.9 we have Theorem 1.1.

Let f : X → Y and g : Z → Y be semialgebraic maps. Then the
pullback X ×Y Z = {(x, z) ∈ X ×Z | f(x) = g(x)} is semialgebraic and
the pullback diagram

X ×Y Z
p2−−−−→ Z

p1

y yg
X −−−−→

f
Y

commutes, where p1 and p2 are the canonical projections, that is
p1(x, z) = x, p2(x, z) = z. We remark that p1 and p2 are continuous and
semialgebraic.

Proposition 2.10. Let f : X → Y be a semialgebraic map. Then
the following are equivalent:

(1) f is semialgebraically proper;
(2) for any semialgebraic set Z and any continuous semialgebraic map

g : Z → Y , the projection p2 : X ×Y Z → Z is semialgebraically
proper.

Proof. Let f be a semialgebraically proper map and g : Z → Y a
continuous semialgebraic map. If K is a compact semialgebraic subset
of Z, then the preimage p−1

2 (K) is a closed subset of a compact set
f−1(g(K))×K, so it is compact. It follows that p2 is semialgebraically
proper.

Conversely, we consider the identity map g : Y → Y , g(y) = y. Then
the pullback X ×Y Y is the graph of f . Suppose K is a compact semi-
algebraic subset of Y . Because p2 is semialgebraically proper, the set
p1(p−1

2 (K)) is compact and semialgebraic, this set is equal to f−1(K).
It follows that f is semialgebraically proper.

Lemma 2.11. Let f : X → Y be a semialgebraic map. If f is semi-
algebraically closed with compact fibers, then f is closed.

Proof. Let C be a closed subset ofX. Suppose f(C) is not closed in Y .

Then there exist a point y in f(C) which is not contained in f(C). Since
f−1(y) is disjoint from the closed set C, for every point x ∈ f−1(y) has a
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semialgebraic neighborhood Ux which does not meet C. Since f−1(y) is
compact, there exist finitely many points x1, . . . , xn ∈ f−1(y) such that

f−1(y) ⊂ Ux1 ∪ · · · ∪ Uxn .
Then the set B = X \ (Ux1 ∪ · · · ∪ Uxn) is closed and semialgebraic in
X and contains C. Since f is semialgebraically closed, the image f(B)

is closed in Y . Thus f(C) ⊂ f(B). This contradiction since y /∈ f(B).
Therefore f is closed.

Let us now prove Theorem 1.2.

Proof of Theorem 1.2. Let f : X → Y be a continuous semialgebraic
map. Clearly, we see that if f is proper, then it is semialgebraically
proper. The converse follows from Theorem 1.1, Lemma 2.11 and Propo-
sition 2.1.

Proposition 2.12. Let f : X → Y be a semialgebraic map. Suppose
f is continuous. Then the following are equivalent:

(1) f is semialgebraically proper;
(2) for any semialgebraic set Z and any continuous semialgebraic map

g : Z → Y , the projection p2 : X ×Y Z → Z is semialgebraically
closed.

(3) for any semialgebraic set Z, the map f × idZ : X × Z → Y × Z
defined by f × idZ(x, z) = (f(x), z) is semialgebraically closed.

Proof. (1)⇒(2) This follows from Propositions 2.9 and 2.10.
(2)⇒(3) Assume f satisfies (2). Given any semialgebraic set Z,

consider the continuous semialgebraic map g : Y × Z → Y defined by
g(y, z) = y, then we have X×Y (Y ×Z) = {(x, f(x), z) | x ∈ X, z ∈ Z}.
Define h : X ×Z → X ×Y (Y ×Z) by h(x, z) = (x, f(x), z). Then h is a
semialgebraic homeomorphism, and hence semialgebraically closed. By
assumption, the projection p2 : X ×Y (Y × Z) → Y × Z is also semial-
gebraically closed. It is easy to check that f × idZ = p2 ◦ h, so the map
f × idZ is semialgebraically closed.

(3)⇒(1) Assume f satisfies (3). Let K be a compact semialgebraic
subset of Y , and let Z be any semialgebraic set. By assumption, the
map f × idZ : X × Z → Y × Z is semialgebraically closed, and thus
the restriction f | × idZ : f−1(K) × Z → K × Z of f × idZ is semi-
algebraically closed. Because K is a compact semialgebraic set, the
projection p : K × Z → Z, p(x, z) = z is semialgebraically closed by
Proposition 2.7. Hence the composition p◦(f |× idZ) : f−1(K)×Z → Z,
(x, z) 7→ z is also semialgebraically closed, so f−1(K) is compact by
Proposition 2.7. Therefore f is semialgebraically proper.
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3. Some remarks

In this section we compare the semialgebraically proper map with the
“proper” map in the both senses of Delfs and Knebush [4] and Scheiderer
[7].

Let X and Y be semialgebraic sets, and let f : X → Y be continuous
and semialgebraic. Delfs and Knebush [4] call f “proper” if for any semi-
algebraic set Z and for any continuous semialgebraic map g : Z → Y ,
the projection p2 : X×Y Z → Z, p2(x, z) = z is semialgebraically closed.
We need to distinguish this notion from former(proper, semialgebraically
proper). To to this, in this case we call f DK-proper.

X ×Y Z
p2−−−−→ Z

p1

y yg
X −−−−→

f
Y

A semialgebraic set X is called complete (in the sense of [4, 7]) if the
constant map fromX to the one point set is DK-proper. This means that
for any semialgebraic set Z the projection p2 : X × Z → Z, p2(x, z) = z
is semialgebraically closed.

A semialgebraic set X is called locally complete (in the sense of [4, 7])
if every point of X has a semialgebraic neighborhood which is complete.

Proposition 3.1. (1) A semialgebraic set is compact if and only
if it is complete.

(2) A semialgebraic set is locally compact if and only if it is locally
complete.

(3) A continuous semialgebraic map is semialgebraically proper if and
only if it is DK-proper.

Proof. (1) This follows from Proposition 2.7.
(2) Let X be a semialgebraic set in Rn. Suppose X is locally com-

plete. Then every x ∈ X has a semialgebraic neighborhood U which is
complete. By (1), U is compact. Therefore X is locally compact.

Conversely, suppose X is locally compact. Then every x ∈ X has a
compact neighborhood U in X. Clearly, there is a positive real number
r such that B(x, r) ∩X ⊂ U , where B(x, r) is the open ball of radius r
centered at x in Rn. Let V be the closure of B(x, r) ∩X in X. Then V
is a semialgebraic neighborhood of x in X which is compact. By (1), V
is complete. Therefore X is locally complete.

(3) This follows from Proposition 2.12.
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Remark 3.2. Recall that a semialgebraic space is an object obtained
by pasting finitely many semialgebraic sets together along open semial-
gebraic subsets. R. Robson proved in [6] that every regular semialgebraic
space admits a semialgebraic embedding into Rn. More precisely, for a
regular semialgebraic space X, there exist a semialgebraic set Y in Rn
and a semialgebraic homeomorphism f : X → Y . From this we see that
the results in this paper are still valid for regular semialgebraic spaces.
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