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MINIMAL CLOZ-COVERS OF kX

Yun Dong Jo and ChangIl Kim*

Abstract. In this paper, we first show that zkX : Ecc(kX) −→ kX
is z#-irreducible and that if G(Ecc(βX)) is a base for closed sets
in βX, then Ecc(kX) is C∗-embedded in Ecc(βX), where kX is
the extension of X such that υX ⊆ kX ⊆ βX and kX is weakly
Lindelöf. Using these, we will show that if G(βX) is a base for closed
sets in βX and for any weakly Lindelöf space Y with X ⊆ Y ⊆
kX, kX = Y , then kEcc(X) = Ecc(kX) if and only if βEcc(X) =
Ecc(βX).

1. Introduction

All spaces in this paper are Tychonoff spaces and βX(υX, resp.)
denotes the Stone-Čech compactification(Hewitt realcompactification,
resp.) of a space X .

Iliadis constructed the absolute of Hausdorff spaces, which is the mini-
mal extremally disconnected cover of Hausdorff spaces and they turn out
to be the perfect onto projective covers([5]). To generalize extremally
disconnected spaces, basically disconnected spaces, quasi-F spaces and
cloz-spaces have been introduced and their minimal covers have been
studied by various authors([3]). In these ramifications, minimal covers
of compact spaces can be nisely characterized.

In particular, Henriksen, Vermeer and Woods ([3]) introduced the
notion of cloz-spaces and they showed that every compact space X has
a minimal cloz-cover (Ecc(X), zX). In [6], it was shown that every space
has a minimal cloz-cover.

In this paper, we first show that zkX : Ecc(kX) −→ kX is z#-
irreducible and that if G(Ecc(βX)) is a base for closed sets in βX, then
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Ecc(kX) is C∗-embedded in Ecc(βX), where kX is the extension of X
such that υX ⊆ kX ⊆ βX and kX is weakly Lindelöf. Using these, we
will show that if G(βX) is a base for closed sets in βX and for any weakly
Lindelöf space Y with X ⊆ Y ⊆ kX, kX = Y , then kEcc(X) = Ecc(kX)
if and only if βEcc(X) = Ecc(βX).

For the terminology, we refer to [1] and [9].

2. Minimal cloz-covers of kX

The set R(X) of all regular closed sets in a space X, when partially
ordered by inclusion, becomes a complete Boolean algebra, in which the
join, meet, and complementation operations are defined as follows : for
any A ∈ R(X) and any {Ai | i ∈ I} ⊆ R(X),
∨{Ai | i ∈ I} = clX(∪{Ai | i ∈ I}),
∧{Ai | i ∈ I} = clX(intX(∩{Ai | i ∈ I})), and
A′ = clX(X −A)

and a sublattice of R(X) is a subset of R(X) that contains ∅, X and is
closed under finite joins and meets.

Recall that a map f : Y −→ X is called a covering map if it is a
continuous, onto, perfect, and irreducible map.

Lemma 2.1. ([3])
(1) Let f : Y −→ X be a covering map. Then the map ψ : R(Y ) −→
R(X), defined by ψ(A) = f(A), is a Boolean isomorphism and the
inverse map ψ−1 of ψ is given by ψ−1(B) = clY (f−1(intX(B))) =
clY (intY (f−1(B))).

(2) Let X be a dense subspace of a space K. Then the map φ : R(K) −→
R(X), defined by φ(A) = A ∩ X, is a Boolean isomorphism and the
inverse map φ−1 of φ is given by φ−1(B) = clK(B).

Definition 2.2. Let X be a space.
(1) A cozero-set C in X is said to be a complemented cozero-set in X if
there is a cozero-set D in X such that C ∩D = ∅ and C ∪D is a dense
subset of X. In case, {C,D} is called a complemented pair of cozero-sets
in X.

(2) Let G(X) = {clX(C) | C is a complemented cozero-set in X}.

Let X be a space and Z(X)# = {clX(intX(A)) | A is a zero-set in X}.
Suppose that {C,D} is a complemented pair of cozero-sets in X. Then
clX(C) = clX(X−D) and since clX(X−D) ∈ Z(X)#, clX(C) ∈ Z(X)#.
Hence G(X) = {A ∈ Z(X)# | A′ ∈ Z(X)#} and G(X) is a Boolean
subalgebra of R(X).
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Since X is C∗-embedded in βX, by Lemma 2.1., G(X) and G(βX)
are Boolean isomorphic.

Definition 2.3. ([3]) A space X is called a cloz-space if every element
of G(X) is a clopen set in X.

A space X is a cloz-space if and only if βX is a cloz-space([3]).

Definition 2.4. Let X be a space.
(1) A pair (Y, f) is called a cloz-cover of X if Y is a cloz-space and
f : Y −→ X is a covering map.

(2) A cloz-cover (Y, f) of X is called a minimal cloz-cover of X if for
any cloz-cover (Z, g) of X, there is a covering map h : Z −→ Y with
f ◦ h = g.

Let B be a Boolean subalgebra of R(X). Let S(B) = {α | α is a
B-ultrafilter} and for any B ∈ B, let ΣBB = {α ∈ S(B) | B ∈ α}. Then
the space S(B), equipped with the topology for which {ΣBB | B ∈ B}
is a base, called the Stone-space of B. Then S(B) is a compact zero-
dimensional space([9]).

Henriksen, Vermeer and Woods showed that every compact space
X has the minimal cloz-cover (Ecc(X), zX). Let X be a compact space,
S(G(X)) the Stone-space of G(X) and Ecc(X) = {(α, x) | x ∈ ∩{A | A ∈
α}} the subspace of the product space S(G(X))×X. Then (Ecc(X), zX)
is the minimal cloz-cover of X, where zX((α, x)) = x([3]). It was shown
that every space has a minimal cloz-cover([7]).

For any space X, let zβ = zβX .

Lemma 2.5. ([6]) Let X be a space. If z−1
β (X) is a cloz-space, then

(z−1
β (X), zβX ) is the minimal cloz-cover of X.

A z-filter F on a space X is called real if F is closed under countable
intersections.

For any space X, let kX = υX ∪ {p ∈ βX − υX | there is a real
z-filter F on X such that ∩{clυX(F ) | F ∈ F} = ∅ and p ∈ ∩{clβX(F ) |
F ∈ F}}. Then kX is an extension of a space X such that υX ⊆ kX ⊆
βX([8]).

A space X is called a weakly Lindelöf space if for any open cover U
of X, there is a countable subfamily V of U such that ∪{V | V ∈ V} is
a dense subset of X. It is well-known that a space X is weakly Lindelöf
if and only if for any R(X)-filter F with the countable meet property,
∩{F | F ∈ F} 6= ∅.
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Lemma 2.6. ([8]) Let X be a space. Then kX is a weakly Lindelöf
space and for any continuous map f : X −→ Y , there is a continuous
map fk : kX −→ kY such that fk ◦ kX = kY ◦ f .

Let X be a space. For any B ∈ G(βX), let Σ
G(βX)
B = ΣB and (ΣB ×

X) ∩ Ecc(kX) = σB. Then for any B ∈ G(βX), zβ(ΣB ×X) = B.

Let zk = zβkX : z−1
β (kX) −→ kX be the restriction and corestriction

of zβ with respect to z−1
β (kX) and kX, respectively. Clearly, we have

the following lemma :
We recall that a covering map f : Y −→ X is called z#-irreducible

if f(Z(Y )#) = Z(X)#. Let f : Y −→ X be a covering map and Z a
zero-set in X. By Lemma 2.1, f(clY (intY (f−1(Z)))) = clX(intX(Z))
and clY (intY (f−1(Z))) ∈ Z(X)#. Hence Z(X)# ⊆ f(Z(Y )#) and so
f : Y −→ X is z#-irreducible if and only if f(Z(Y )#) ⊆ Z(X)#.

Lemma 2.7. Let f : Y −→ X and g : W −→ Y be covering maps.
Then f ◦ g : W −→ X is z#-irreducible if and only if f : Y −→ X and
g : W −→ Y are z#-irreducible.

Let X be a space such that G(X) is a base for closed sets in X. Then
Ecc(X) = {α ∈ S(G(X)) | ∩α 6= ∅} is the subspace of S(G(X))([6]).

Theorem 2.8. Let X be a space. Then we have the following :
(1) z−1

β (kX) is a weakly Lindelöf space,

(2) zk is z#-irreducible,
(3) zk(G(z−1

β (kX))) = G(kX),

(4) (z−1
β (kX), zk) is the minimal cloz-cover of kX, and

(5) if G(Ecc(βX)) is a base for closed sets in βX, then Ecc(kX) is C∗-
embedded in Ecc(βX)

Proof. (1) Let T = z−1
β (kX). Suppose that there is an R(T )-filter F

with the countable meet property such that ∩{F | F ∈ F} = ∅.
We first claim that ∩{zk(F ) | F ∈ F} = ∅. Suppose that ∩{zk(F ) |

F ∈ F} 6= ∅. Pick x ∈ ∩{zk(F ) | F ∈ F}. Note that for any A ⊆ R(T ),
∧A ⊆ ∩A. Since F has the countable meet property, F has the finte
intersection property. Hence {F ∩ z−1

k (x) | F ∈ F} is a family of closed

sets in z−1
k (x) with the finite intersection property. Since z−1

k (x) is a

compact subset in T , ∩{F ∩ z−1
k (x) | F ∈ F} 6= ∅ and so ∩{F | F ∈

F} 6= ∅. This is a contradiction.
Hence ∩{zk(F ) | F ∈ F} = ∅. Since kX is a weakly Lindelöf space,

there is a sequence (Fn) in F such that clkX(∪{kX − zk(Fn) | n ∈
N}) = kX. Let F ∈ F . Then z−1

k (zk(T − F )) ⊇ T − F and hence
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zk(F
′) ⊇ zk(T−F ) ⊇ kX−zk(F ). Thus clkX(∪{zk(F ′n) | n ∈ N}) = kX.

Note that

kX = clkX(∪{zk(F ′n) | n ∈ N})
= clkX(zk(∪{F ′n | n ∈ N}))
= zk(clT (∪{F ′n | n ∈ N}))
= zk(∨{F ′n | n ∈ N}).

Since zk is an irreducible map, by Lemma 2.1, ∨{F ′n | n ∈ N} = T and
so (∨{F ′n | n ∈ N})′ = ∧{Fn | n ∈ N} = ∅. Since F has the countable
meet property, it is a contradiction. Hence T is a weakly Lindelöf space.

(2) Take any Z ∈ Z(T )#. By (1), T is a weakly Lindelöf space and
hence there is a sequence (An) in Z(Ecc(βX))# such that T − Z =
clEcc(βX)(∪{T − An | n ∈ N}) ∩ (T − Z) and for any n ∈ N , T − An ⊆
T − Z. Then clearly, Z ⊆ clEcc(βX)(intEcc(βX)(∩{An | n ∈ N})) ∩ T =
∧{An | n ∈ N} ∩ T . Futher,

Z = (T − clEcc(βX)(∪{T −An | n ∈ N})) ∪ Z
= intEcc(βX)(∩{An ∩ T | n ∈ N}) ∪ Z

and hence ∧{An∩T | n ∈ N} ⊆ Z. Thus Z = (∧{An | n ∈ N})∩T . Note
that zk(Z) = zβ(∧{An | n ∈ N}) ∩ kX = (∧{zβ(An) | n ∈ N}) ∩ kX.

Since ∧{An | n ∈ N} ∈ Z(Ecc(βX))# and zβ is z#-irreducible, zk(Z) ∈
Z(kX)#.

(3) Clearly, G(kX) ⊆ zk(G(T )). Let B ∈ G(T ). Then B,B′ ∈ Z(T )#.
By (2) zk is z#-irreducible and so zk(B), zk(B)′ ∈ Z(kX)#. Hence
zk(B) ∈ G(kX) and thus zk(G(T )) ⊆ G(kX).

(4) Let B ∈ G(T ). By (3), there is an A ∈ G(βX) such that A∩kX =
zk(B). Then clEcc(βX)(intEcc(βX)(z

−1
β (A))) is a clopen set in Ecc(βX)

and clEcc(βX)(intEcc(βX)(z
−1
β (A))) ∩ T = B. Hence B is clopen in T

and so T is a cloz-space. By Lemma 2.5, (z−1
β (kX), zk) is the minimal

cloz-cover of kX.

(5) Suppose that G(Ecc(βX)) is a base for closed sets in βX. Then
Ecc(βX) = S(G(βX))([3])and Ecc(βX) is a zero-dimensional space.
Since z−1

β (kX) is the minimal cloz-cover of kX, βEcc(kX) and S(zk(G(T )))
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are homeomorphic ([7]). By (3), S(zk(G(T ))) and S(G(kX)) are home-
omorphic. By Lemma 2.1, G(kX) and G(βX) are Boolean isomorphic
and so βEcc(kX) is homeomorphic to Ecc(βX).

Let X be a space. Then there is a covering map g : βEcc(X) −→
Ecc(βX) such that zβ ◦ g ◦ βEcc(X) = βX ◦ zX . By Lemma 2.6, there is a

unique continuous map zkX : kEcc(X) −→ kX such that zkX ◦ kEcc(X) =

kX ◦zX . Since kEcc(X) is a dense embedding, βkX ◦zkX = zβ ◦g◦βkEcc(X).
Hence there is a continuous map l : kEcc(X) −→ Ecc(kX) such that
j ◦ l = g ◦βkEcc(X) and zk ◦ l = zkX([9]), where j : Ecc(kX) −→ Ecc(βX).

Corollary 2.9. Let X be a space such that G(βX) is a base for
closed sets in βX and kEcc(X) = Ecc(kX), that is, l : kEcc(X) −→
Ecc(kX) is a homeomeorphism. Then βEcc(X) = Ecc(βX), that is,
g : βEcc(X) −→ Ecc(βX) is a homeomeorphism ([1]).

Proof. Since l : kEcc(X) −→ Ecc(kX) is a homeomorphism, by The-
orem 2.8, kEcc(X) is C∗-embedded in Ecc(βX). Hence βEcc(X) =
βkEcc(X) = Ecc(βX). Thus g is a homeomorphism.

LetX be a space such that βEcc(X) = Ecc(βX). Then g : βEcc(X) −→
Ecc(βX) is a homeomorphsim such that j ◦ l = g ◦ βkEcc(X). Since
g ◦ βkEcc(X) is an embedding, l is an embedding.

Theorem 2.10. Let X be a space such that G(βX) is a base for
closed sets in βX and for any weakly Lindelöf space Y with X ⊆ Y ⊆
kX, kX = Y . Then kEcc(X) = Ecc(kX) if and only if βEcc(X) =
Ecc(βX).

Proof. Suppose that βEcc(X) = Ecc(βX). Then cleraly, z−1
β (X) =

Ecc(X). Let m = zkX : kEcc(X) −→ kX.
We first claim that m(kEcc(X)) is a weakly Lindelöf space. Take

any open cover U of m(kEcc(X)). Then V = {m−1(U) | U ∈ U} is
an open cover of kEcc(X). Since kEcc(X) is a weakly Lindelöf space,
there is a countable subfamily U0 of U such that ∪{m−1(U) | U ∈ U0} =
m−1(∪{U | U ∈ U}) is dense in m(kEcc(X)). Since m is continuous,
∪{U | U ∈ U0} is dense in m(kEcc(X)). Hence m(kEcc(X)) is weakly
Lindelöf.

Since X ⊆ m(kEcc(X)) ⊆ kX, by the assumption, m(kEcc(X)) =
kX and so m is onto. Take any x ∈ kX. Since m is an onto map
and zX is a covering map, m(kEcc(X)−Ecc(X)) = kX −X([9]). Since
βkX ◦m = zβ ◦ g ◦ βkΛX , m−1(x) = (zβ ◦ g)−1(x) ⊆ kEcc(X)− Ecc(X).



Minimal cloz-covers of kX 309

Since zβ ◦ g is a covering map, m−1(x) is a compact subset of kEcc(X)
and hence m is a compact map.

Let F be a closed set in kEcc(X) and x ∈ kX−m(F ). Then m−1(x)∩
F = ∅. Since m−1(x) is a comact space and Ecc(βX) is the Stone space
of G(βX), there is a B ∈ G(βX) such that m−1(x) ⊆ ΣB and F ⊆ ΣB′ .
Since zβ(Σ′B) = B′ and z−1

β (x)∩ΣB′ = m−1(x)∩ΣB′ = ∅, x /∈ B′. Since

clkX(m(F )) ⊆ B′, x /∈ clkX(m(F )). Thus m is a closed map and so m
is a perfect map.

Since zβ ◦ g ◦ βkEcc(X) = βkX ◦m and zβ ◦ g is a covering map, m is
a covering map. Since kEcc(X) is a cloz-space, there is a covering map
t : kEcc(X) −→ Ecc(kX) such that zk ◦ t = m. Since kEcc(X) is C∗-
embedded in βEcc(X) and zβ ◦ g : βEcc(X) −→ βX is z#-irreducible,

m is z#-irreducible. Hence by Lemma 2.7, t is z#-irreducible.

Take any δ1 6= δ2 in kEcc(X). Note that βEcc(X) = S(G(βX))
and kEcc(X) ⊆ βEcc(X). Then there are A,B ∈ G(βX) such that
δ1 ∈ σA, δ2 ∈ σB and σA ∩ σB = ∅. Since m is z#-irreducible, m(σA) =
zk(t(σA)) ∈ G(kX). Hence clEcc(kX)(z

−1
k (zk(t(σA)))) = t(σA) is a clopen

set in Ecc(kX). Similarly, t(σB) is a clopen set in Ecc(kX). Since
t(σA) ∧ t(σA) = ∅, t(σA) ∩ t(σA) = ∅. Since t(δ1) ∈ t(σA) and t(δ2) ∈
t(σB), t is one-to-one and hence t is a homeomorphism.
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