MINIMAL CLOZ-COVERS OF kX

YUN DONG JO AND CHANGIL KIM*

Abstract. In this paper, we first show that $z_{kX}: E_{cc}(kX) \longrightarrow kX$ is $z^{\#}$ -irreducible and that if $\mathcal{G}(E_{cc}(\beta X))$ is a base for closed sets in βX , then $E_{cc}(kX)$ is C^* -embedded in $E_{cc}(\beta X)$, where kX is the extension of X such that $vX \subseteq kX \subseteq \beta X$ and kX is weakly Lindelöf. Using these, we will show that if $\mathcal{G}(\beta X)$ is a base for closed sets in βX and for any weakly Lindelöf space Y with $X \subseteq Y \subseteq kX$, kX = Y, then $kE_{cc}(X) = E_{cc}(kX)$ if and only if $\beta E_{cc}(X) = E_{cc}(\beta X)$.

1. Introduction

All spaces in this paper are Tychonoff spaces and $\beta X(vX, \text{ resp.})$ denotes the Stone-Čech compactification(Hewitt realcompactification, resp.) of a space X.

Iliadis constructed the absolute of Hausdorff spaces, which is the minimal extremally disconnected cover of Hausdorff spaces and they turn out to be the perfect onto projective covers([5]). To generalize extremally disconnected spaces, basically disconnected spaces, quasi-F spaces and cloz-spaces have been introduced and their minimal covers have been studied by various authors([3]). In these ramifications, minimal covers of compact spaces can be nisely characterized.

In particular, Henriksen, Vermeer and Woods ([3]) introduced the notion of cloz-spaces and they showed that every compact space X has a minimal cloz-cover $(E_{cc}(X), z_X)$. In [6], it was shown that every space has a minimal cloz-cover.

In this paper, we first show that $z_{kX}: E_{cc}(kX) \longrightarrow kX$ is $z^{\#}$ irreducible and that if $\mathcal{G}(E_{cc}(\beta X))$ is a base for closed sets in βX , then

Received April 14, 2013. Accepted May 13, 2013.

²⁰¹⁰ Mathematics Subject Classification. 54D80, 54D20, 54G05, 54C10.

Key words and phrases. Stone-space, weakly Linelöf space, cloz-space, covering map.

^{*}Corresponding author

 $E_{cc}(kX)$ is C^* -embedded in $E_{cc}(\beta X)$, where kX is the extension of X such that $vX \subseteq kX \subseteq \beta X$ and kX is weakly Lindelöf. Using these, we will show that if $\mathcal{G}(\beta X)$ is a base for closed sets in βX and for any weakly Lindelöf space Y with $X \subseteq Y \subseteq kX$, kX = Y, then $kE_{cc}(X) = E_{cc}(kX)$ if and only if $\beta E_{cc}(X) = E_{cc}(\beta X)$.

For the terminology, we refer to [1] and [9].

2. Minimal cloz-covers of kX

The set R(X) of all regular closed sets in a space X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows: for any $A \in R(X)$ and any $\{A_i \mid i \in I\} \subseteq R(X)$,

$$\forall \{A_i \mid i \in I\} = cl_X(\cup \{A_i \mid i \in I\}),$$

 $\land \{A_i \mid i \in I\} = cl_X(int_X(\cap \{A_i \mid i \in I\})), \text{ and }$
 $A' = cl_X(X - A)$

and a sublattice of R(X) is a subset of R(X) that contains \emptyset , X and is closed under finite joins and meets.

Recall that a map $f: Y \longrightarrow X$ is called a covering map if it is a continuous, onto, perfect, and irreducible map.

Lemma 2.1. ([3])

- (1) Let $f: Y \longrightarrow X$ be a covering map. Then the map $\psi: R(Y) \longrightarrow R(X)$, defined by $\psi(A) = f(A)$, is a Boolean isomorphism and the inverse map ψ^{-1} of ψ is given by $\psi^{-1}(B) = cl_Y(f^{-1}(int_X(B))) = cl_Y(int_Y(f^{-1}(B)))$.
- (2) Let X be a dense subspace of a space K. Then the map $\phi : R(K) \longrightarrow R(X)$, defined by $\phi(A) = A \cap X$, is a Boolean isomorphism and the inverse map ϕ^{-1} of ϕ is given by $\phi^{-1}(B) = cl_K(B)$.

Definition 2.2. Let X be a space.

- (1) A cozero-set C in X is said to be a complemented cozero-set in X if there is a cozero-set D in X such that $C \cap D = \emptyset$ and $C \cup D$ is a dense subset of X. In case, $\{C, D\}$ is called a complemented pair of cozero-sets in X.
- (2) Let $\mathcal{G}(X) = \{cl_X(C) \mid C \text{ is a complemented cozero-set in } X\}.$

Let X be a space and $Z(X)^{\#} = \{cl_X(int_X(A)) \mid A \text{ is a zero-set in } X\}$. Suppose that $\{C, D\}$ is a complemented pair of cozero-sets in X. Then $cl_X(C) = cl_X(X-D)$ and since $cl_X(X-D) \in Z(X)^{\#}$, $cl_X(C) \in Z(X)^{\#}$. Hence $\mathcal{G}(X) = \{A \in Z(X)^{\#} \mid A' \in Z(X)^{\#}\}$ and $\mathcal{G}(X)$ is a Boolean subalgebra of R(X).

Since X is C^* -embedded in βX , by Lemma 2.1., $\mathcal{G}(X)$ and $\mathcal{G}(\beta X)$ are Boolean isomorphic.

Definition 2.3. ([3]) A space X is called a *cloz-space* if every element of $\mathcal{G}(X)$ is a clopen set in X.

A space X is a cloz-space if and only if βX is a cloz-space([3]).

Definition 2.4. Let X be a space.

- (1) A pair (Y, f) is called a cloz-cover of X if Y is a cloz-space and $f: Y \longrightarrow X$ is a covering map.
- (2) A cloz-cover (Y, f) of X is called a minimal cloz-cover of X if for any cloz-cover (Z, g) of X, there is a covering map $h : Z \longrightarrow Y$ with $f \circ h = g$.

Let \mathcal{B} be a Boolean subalgebra of R(X). Let $S(\mathcal{B}) = \{\alpha \mid \alpha \text{ is a } \mathcal{B}\text{-ultrafilter}\}$ and for any $B \in \mathcal{B}$, let $\Sigma_B^{\mathcal{B}} = \{\alpha \in S(\mathcal{B}) \mid B \in \alpha\}$. Then the space $S(\mathcal{B})$, equipped with the topology for which $\{\Sigma_B^{\mathcal{B}} \mid B \in \mathcal{B}\}$ is a base, called *the Stone-space of* \mathcal{B} . Then $S(\mathcal{B})$ is a compact zero-dimensional space([9]).

Henriksen, Vermeer and Woods showed that every compact space X has the minimal cloz-cover $(E_{cc}(X), z_X)$. Let X be a compact space, $\mathcal{S}(\mathcal{G}(X))$ the Stone-space of $\mathcal{G}(X)$ and $E_{cc}(X) = \{(\alpha, x) \mid x \in \cap \{A \mid A \in \alpha\}\}$ the subspace of the product space $\mathcal{S}(\mathcal{G}(X)) \times X$. Then $(E_{cc}(X), z_X)$ is the minimal cloz-cover of X, where $z_X((\alpha, x)) = x([3])$. It was shown that every space has a minimal cloz-cover([7]).

For any space X, let $z_{\beta} = z_{\beta X}$.

Lemma 2.5. ([6]) Let X be a space. If $z_{\beta}^{-1}(X)$ is a cloz-space, then $(z_{\beta}^{-1}(X), z_{\beta_X})$ is the minimal cloz-cover of X.

A z-filter $\mathcal F$ on a space X is called real if $\mathcal F$ is closed under countable intersections.

For any space X, let $kX = vX \cup \{p \in \beta X - vX \mid \text{ there is a real } z\text{-filter } \mathcal{F} \text{ on } X \text{ such that } \cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} = \emptyset \text{ and } p \in \cap \{cl_{\beta X}(F) \mid F \in \mathcal{F}\}\}$. Then kX is an extension of a space X such that $vX \subseteq kX \subseteq \beta X([8])$.

A space X is called a weakly Lindelöf space if for any open cover \mathcal{U} of X, there is a countable subfamily \mathcal{V} of \mathcal{U} such that $\cup \{V \mid V \in \mathcal{V}\}$ is a dense subset of X. It is well-known that a space X is weakly Lindelöf if and only if for any R(X)-filter \mathcal{F} with the countable meet property, $\cap \{F \mid F \in \mathcal{F}\} \neq \emptyset$.

Lemma 2.6. ([8]) Let X be a space. Then kX is a weakly Lindelöf space and for any continuous map $f: X \longrightarrow Y$, there is a continuous map $f_k : kX \longrightarrow kY$ such that $f_k \circ k_X = k_Y \circ f$.

Let X be a space. For any $B \in \mathcal{G}(\beta X)$, let $\Sigma_B^{\mathcal{G}(\beta X)} = \Sigma_B$ and $(\Sigma_B \times X) \cap E_{cc}(kX) = \sigma_B$. Then for any $B \in \mathcal{G}(\beta X)$, $z_{\beta}(\Sigma_B \times X) = B$.

Let $z_k = z_{\beta_{kX}} : z_{\beta}^{-1}(kX) \longrightarrow kX$ be the restriction and corestriction of z_{β} with respect to $z_{\beta}^{-1}(kX)$ and kX, respectively. Clearly, we have the following lemma:

We recall that a covering map $f: Y \longrightarrow X$ is called $z^{\#}$ -irreducible if $f(Z(Y)^{\#}) = Z(X)^{\#}$. Let $f: Y \longrightarrow X$ be a covering map and Z a zero-set in X. By Lemma 2.1, $f(cl_Y(int_Y(f^{-1}(Z)))) = cl_X(int_X(Z))$ and $cl_Y(int_Y(f^{-1}(Z))) \in Z(X)^{\#}$. Hence $Z(X)^{\#} \subseteq f(Z(Y)^{\#})$ and so $f: Y \longrightarrow X$ is $z^{\#}$ -irreducible if and only if $f(Z(Y)^{\#}) \subseteq Z(X)^{\#}$.

Lemma 2.7. Let $f: Y \longrightarrow X$ and $g: W \longrightarrow Y$ be covering maps. Then $f \circ g: W \longrightarrow X$ is $z^{\#}$ -irreducible if and only if $f: Y \longrightarrow X$ and $g: W \longrightarrow Y$ are $z^{\#}$ -irreducible.

Let X be a space such that $\mathcal{G}(X)$ is a base for closed sets in X. Then $E_{cc}(X) = \{ \alpha \in S(\mathcal{G}(X)) \mid \alpha \neq \emptyset \}$ is the subspace of $S(\mathcal{G}(X))([6])$.

Theorem 2.8. Let X be a space. Then we have the following:

- (1) $z_{\beta}^{-1}(kX)$ is a weakly Lindelöf space,
- (2) z_k is $z^{\#}$ -irreducible, (3) $z_k(\mathcal{G}(z_{\beta}^{-1}(kX))) = \mathcal{G}(kX)$,
- (4) $(z_{\beta}^{-1}(kX), z_k)$ is the minimal cloz-cover of kX, and
- (5) if $\mathcal{G}(E_{cc}(\beta X))$ is a base for closed sets in βX , then $E_{cc}(kX)$ is C^* embedded in $E_{cc}(\beta X)$

Proof. (1) Let $T = z_{\beta}^{-1}(kX)$. Suppose that there is an R(T)-filter \mathcal{F} with the countable meet property such that $\cap \{F \mid F \in \mathcal{F}\} = \emptyset$.

We first claim that $\cap \{z_k(F) \mid F \in \mathcal{F}\} = \emptyset$. Suppose that $\cap \{z_k(F) \mid F \in \mathcal{F}\}$ $F \in \mathcal{F} \neq \emptyset$. Pick $x \in \cap \{z_k(F) \mid F \in \mathcal{F}\}$. Note that for any $\mathcal{A} \subseteq R(T)$, $\wedge \mathcal{A} \subseteq \cap \mathcal{A}$. Since \mathcal{F} has the countable meet property, \mathcal{F} has the finte intersection property. Hence $\{F \cap z_k^{-1}(x) \mid F \in \mathcal{F}\}$ is a family of closed sets in $z_k^{-1}(x)$ with the finite intersection property. Since $z_k^{-1}(x)$ is a compact subset in T, $\cap \{F \cap z_k^{-1}(x) \mid F \in \mathcal{F}\} \neq \emptyset$ and so $\cap \{F \mid F \in \mathcal{F}\}$ $\mathcal{F}\} \neq \emptyset$. This is a contradiction.

Hence $\cap \{z_k(F) \mid F \in \mathcal{F}\} = \emptyset$. Since kX is a weakly Lindelöf space, there is a sequence (F_n) in \mathcal{F} such that $cl_{kX}(\bigcup \{kX - z_k(F_n) \mid n \in$ $N\}$ = kX. Let $F \in \mathcal{F}$. Then $z_k^{-1}(z_k(T-F)) \supseteq T-F$ and hence $z_k(F') \supseteq z_k(T-F) \supseteq kX - z_k(F)$. Thus $cl_{kX}(\cup \{z_k(F'_n) \mid n \in N\}) = kX$. Note that

$$kX = cl_{kX}(\cup \{z_k(F'_n) \mid n \in N\})$$

$$= cl_{kX}(z_k(\cup \{F'_n \mid n \in N\}))$$

$$= z_k(cl_T(\cup \{F'_n \mid n \in N\}))$$

$$= z_k(\vee \{F'_n \mid n \in N\}).$$

Since z_k is an irreducible map, by Lemma 2.1, $\vee \{F'_n \mid n \in N\} = T$ and so $(\vee \{F'_n \mid n \in N\})' = \wedge \{F_n \mid n \in N\} = \emptyset$. Since \mathcal{F} has the countable meet property, it is a contradiction. Hence T is a weakly Lindelöf space.

(2) Take any $Z \in Z(T)^{\#}$. By (1), T is a weakly Lindelöf space and hence there is a sequence (A_n) in $Z(E_{cc}(\beta X))^{\#}$ such that $T - Z = cl_{E_{cc}(\beta X)}(\cup \{T - A_n \mid n \in N\}) \cap (T - Z)$ and for any $n \in N$, $T - A_n \subseteq T - Z$. Then clearly, $Z \subseteq cl_{E_{cc}(\beta X)}(int_{E_{cc}(\beta X)}(\cap \{A_n \mid n \in N\})) \cap T = \wedge \{A_n \mid n \in N\} \cap T$. Futher,

$$Z = (T - cl_{E_{cc}(\beta X)}(\cup \{T - A_n \mid n \in N\})) \cup Z$$
$$= int_{E_{cc}(\beta X)}(\cap \{A_n \cap T \mid n \in N\}) \cup Z$$

and hence $\land \{A_n \cap T \mid n \in N\} \subseteq Z$. Thus $Z = (\land \{A_n \mid n \in N\}) \cap T$. Note that $z_k(Z) = z_\beta(\land \{A_n \mid n \in N\}) \cap kX = (\land \{z_\beta(A_n) \mid n \in N\}) \cap kX$. Since $\land \{A_n \mid n \in N\} \in Z(E_{cc}(\beta X))^\#$ and z_β is $z^\#$ -irreducible, $z_k(Z) \in Z(kX)^\#$.

- (3) Clearly, $\mathcal{G}(kX) \subseteq z_k(\mathcal{G}(T))$. Let $B \in \mathcal{G}(T)$. Then $B, B' \in Z(T)^{\#}$. By (2) z_k is $z^{\#}$ -irreducible and so $z_k(B), z_k(B)' \in Z(kX)^{\#}$. Hence $z_k(B) \in \mathcal{G}(kX)$ and thus $z_k(\mathcal{G}(T)) \subseteq \mathcal{G}(kX)$.
- (4) Let $B \in \mathcal{G}(T)$. By (3), there is an $A \in \mathcal{G}(\beta X)$ such that $A \cap kX = z_k(B)$. Then $cl_{E_{cc}(\beta X)}(int_{E_{cc}(\beta X)}(z_{\beta}^{-1}(A)))$ is a clopen set in $E_{cc}(\beta X)$ and $cl_{E_{cc}(\beta X)}(int_{E_{cc}(\beta X)}(z_{\beta}^{-1}(A))) \cap T = B$. Hence B is clopen in T and so T is a cloz-space. By Lemma 2.5, $(z_{\beta}^{-1}(kX), z_k)$ is the minimal cloz-cover of kX.
- (5) Suppose that $\mathcal{G}(E_{cc}(\beta X))$ is a base for closed sets in βX . Then $E_{cc}(\beta X) = S(\mathcal{G}(\beta X))([3])$ and $E_{cc}(\beta X)$ is a zero-dimensional space. Since $z_{\beta}^{-1}(kX)$ is the minimal cloz-cover of kX, $\beta E_{cc}(kX)$ and $S(z_k(\mathcal{G}(T)))$

are homeomorphic ([7]). By (3), $S(z_k(\mathcal{G}(T)))$ and $S(\mathcal{G}(kX))$ are homeomorphic. By Lemma 2.1, $\mathcal{G}(kX)$ and $\mathcal{G}(\beta X)$ are Boolean isomorphic and so $\beta E_{cc}(kX)$ is homeomorphic to $E_{cc}(\beta X)$.

Let X be a space. Then there is a covering map $g: \beta E_{cc}(X) \longrightarrow E_{cc}(\beta X)$ such that $z_{\beta} \circ g \circ \beta_{E_{cc}(X)} = \beta_{X} \circ z_{X}$. By Lemma 2.6, there is a unique continuous map $z_{X}^{k}: kE_{cc}(X) \longrightarrow kX$ such that $z_{X}^{k} \circ k_{E_{cc}(X)} = k_{X} \circ z_{X}$. Since $k_{E_{cc}(X)}$ is a dense embedding, $\beta_{kX} \circ z_{X}^{k} = z_{\beta} \circ g \circ \beta_{kE_{cc}(X)}$. Hence there is a continuous map $l: kE_{cc}(X) \longrightarrow E_{cc}(kX)$ such that $j \circ l = g \circ \beta_{kE_{cc}(X)}$ and $z_{k} \circ l = z_{X}^{k}([9])$, where $j: E_{cc}(kX) \longrightarrow E_{cc}(\beta X)$.

Corollary 2.9. Let X be a space such that $\mathcal{G}(\beta X)$ is a base for closed sets in βX and $kE_{cc}(X) = E_{cc}(kX)$, that is, $l: kE_{cc}(X) \longrightarrow E_{cc}(kX)$ is a homeomeorphism. Then $\beta E_{cc}(X) = E_{cc}(\beta X)$, that is, $g: \beta E_{cc}(X) \longrightarrow E_{cc}(\beta X)$ is a homeomeorphism ([1]).

Proof. Since $l: kE_{cc}(X) \longrightarrow E_{cc}(kX)$ is a homeomorphism, by Theorem 2.8, $kE_{cc}(X)$ is C^* -embedded in $E_{cc}(\beta X)$. Hence $\beta E_{cc}(X) = \beta kE_{cc}(X) = E_{cc}(\beta X)$. Thus g is a homeomorphism.

Let X be a space such that $\beta E_{cc}(X) = E_{cc}(\beta X)$. Then $g: \beta E_{cc}(X) \longrightarrow E_{cc}(\beta X)$ is a homeomorphism such that $j \circ l = g \circ \beta_{kE_{cc}(X)}$. Since $g \circ \beta_{kE_{cc}(X)}$ is an embedding, l is an embedding.

Theorem 2.10. Let X be a space such that $\mathcal{G}(\beta X)$ is a base for closed sets in βX and for any weakly Lindelöf space Y with $X \subseteq Y \subseteq kX$, kX = Y. Then $kE_{cc}(X) = E_{cc}(kX)$ if and only if $\beta E_{cc}(X) = E_{cc}(\beta X)$.

Proof. Suppose that $\beta E_{cc}(X) = E_{cc}(\beta X)$. Then cleraly, $z_{\beta}^{-1}(X) = E_{cc}(X)$. Let $m = z_X^k : kE_{cc}(X) \longrightarrow kX$.

We first claim that $m(kE_{cc}(X))$ is a weakly Lindelöf space. Take any open cover \mathcal{U} of $m(kE_{cc}(X))$. Then $\mathcal{V} = \{m^{-1}(U) \mid U \in \mathcal{U}\}$ is an open cover of $kE_{cc}(X)$. Since $kE_{cc}(X)$ is a weakly Lindelöf space, there is a countable subfamily \mathcal{U}_0 of \mathcal{U} such that $\bigcup \{m^{-1}(U) \mid \mathcal{U} \in \mathcal{U}_0\} =$ $m^{-1}(\bigcup \{U \mid U \in \mathcal{U}\})$ is dense in $m(kE_{cc}(X))$. Since m is continuous, $\bigcup \{U \mid \mathcal{U} \in \mathcal{U}_0\}$ is dense in $m(kE_{cc}(X))$. Hence $m(kE_{cc}(X))$ is weakly Lindelöf.

Since $X \subseteq m(kE_{cc}(X)) \subseteq kX$, by the assumption, $m(kE_{cc}(X)) = kX$ and so m is onto. Take any $x \in kX$. Since m is an onto map and z_X is a covering map, $m(kE_{cc}(X) - E_{cc}(X)) = kX - X([9])$. Since $\beta_{kX} \circ m = z_{\beta} \circ g \circ \beta_{k\Lambda X}, m^{-1}(x) = (z_{\beta} \circ g)^{-1}(x) \subseteq kE_{cc}(X) - E_{cc}(X)$.

Since $z_{\beta} \circ g$ is a covering map, $m^{-1}(x)$ is a compact subset of $kE_{cc}(X)$ and hence m is a compact map.

Let F be a closed set in $kE_{cc}(X)$ and $x \in kX - m(F)$. Then $m^{-1}(x) \cap F = \emptyset$. Since $m^{-1}(x)$ is a comact space and $E_{cc}(\beta X)$ is the Stone space of $\mathcal{G}(\beta X)$, there is a $B \in \mathcal{G}(\beta X)$ such that $m^{-1}(x) \subseteq \Sigma_B$ and $F \subseteq \Sigma_{B'}$. Since $z_{\beta}(\Sigma'_B) = B'$ and $z_{\beta}^{-1}(x) \cap \Sigma_{B'} = m^{-1}(x) \cap \Sigma_{B'} = \emptyset$, $x \notin B'$. Since $cl_{kX}(m(F)) \subseteq B'$, $x \notin cl_{kX}(m(F))$. Thus m is a closed map and so m is a perfect map.

Since $z_{\beta} \circ g \circ \beta_{kE_{cc}(X)} = \beta_{kX} \circ m$ and $z_{\beta} \circ g$ is a covering map, m is a covering map. Since $kE_{cc}(X)$ is a cloz-space, there is a covering map $t: kE_{cc}(X) \longrightarrow E_{cc}(kX)$ such that $z_k \circ t = m$. Since $kE_{cc}(X)$ is C^* -embedded in $\beta E_{cc}(X)$ and $z_{\beta} \circ g: \beta E_{cc}(X) \longrightarrow \beta X$ is $z^{\#}$ -irreducible, m is $z^{\#}$ -irreducible. Hence by Lemma 2.7, t is $z^{\#}$ -irreducible.

Take any $\delta_1 \neq \delta_2$ in $kE_{cc}(X)$. Note that $\beta E_{cc}(X) = S(\mathcal{G}(\beta X))$ and $kE_{cc}(X) \subseteq \beta E_{cc}(X)$. Then there are $A, B \in \mathcal{G}(\beta X)$ such that $\delta_1 \in \sigma_A$, $\delta_2 \in \sigma_B$ and $\sigma_A \cap \sigma_B = \emptyset$. Since m is $z^{\#}$ -irreducible, $m(\sigma_A) = z_k(t(\sigma_A)) \in \mathcal{G}(kX)$. Hence $cl_{E_{cc}(kX)}(z_k^{-1}(z_k(t(\sigma_A)))) = t(\sigma_A)$ is a clopen set in $E_{cc}(kX)$. Similarly, $t(\sigma_B)$ is a clopen set in $E_{cc}(kX)$. Since $t(\sigma_A) \wedge t(\sigma_A) = \emptyset$, $t(\sigma_A) \cap t(\sigma_A) = \emptyset$. Since $t(\delta_1) \in t(\sigma_A)$ and $t(\delta_2) \in t(\sigma_B)$, t is one-to-one and hence t is a homeomorphism.

References

- L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New York, 1960.
- [2] M. Henriksen, J. Vermeer, and R. G. Woods, Quasi-F covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779–804.
- [3] M. Henriksen, J. Vermeer, and R. G. Woods, Wallman covers of compact spaces, Dissertationes Math. 283 (1989), 5-31.
- [4] M. Henriksen and R. G. Woods, Cozero complement spaces; When the space of minimal prime ideals of a C(X) is compact, Topology Appl. 141 (2004), 147-170.
- [5] S. Iliadis, Absolute of Hausdorff spaces, Sov. Math. Dokl. 2 (1963), 295-298.
- [6] C. I. Kim, Cloz-covers of Tychonoff spaces, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), 361-386.
- [7] C. I. Kim, Minimal cloz-covers and Boolean Algebras, Korean J. Math. 20 (2012), 517-524.
- [8] Y. S. Yun and C. I. Kim, An extension which is a weakly Lindelöf space, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 19 (2012), 273-279.
- [9] J. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, Berlin, 1988.

Yun Dong Jo Korea Institute for Curriculum and Evaluation, Jeongdong Bldg, Jeongdong-gil 21-15, Jung-gu, Seoul(100-784), Korea. E-mail: jydong05@kice.re.kr

ChangIl Kim

Department of Mathematics Education, Dankook University, 126, Jukjeon, Yongin, Gyeonggi, South Korea 448-701, KOREA.

E-mail: kci206@hanmail.net