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MULTIPLICATION DEDEKIND MODULES

Yong Hwan Cho

Abstract. In this paper, we give some properties on multiplication
Dedekind modules.

1. Introduction

Throughout this paper all rings will be commutative with identity
and all modules will be unitary. Let M be an R-module, S the set of
nonzero divisors of R and RS the total quotient ring of R. For a nonzero
ideal I of R, let I−1 = {x ∈ RS |xI ⊆ R}. I is said to be an invertible
ideal of R if II−1 = R. Put T = {t ∈ S|tm = 0 for some m ∈M implies
m = 0}. Then T is a multiplicatively closed subset of S and if M is
torsion free, then T = S [8, Proposition 1.1]. An R module M is said
to be faithful if Ann M = [0 :R M ] = 0. In particular, if M is a faithful
multiplication module then M is torsion free by [3, Lemma 4.1] and so
T = S. So in this case, RT = RS . Let N be a submodule of M . If
x = r

t ∈ RT and n ∈ N , then we say that xn ∈M if there exists m ∈M
such that tm = rn. Then this is a well defined operation [8, p.399]. For
a submodule N of M , N−1 = {x ∈ RT |xN ⊆ M} = [M :RT

N ]. We
say that N is invertible in M if NN−1 = M and M is called a Dedekind
module providing that every nonzero submodule of M is invertible. An
R-module M is said to be a D1-module if non zero cyclic submodule of
M is invertible. It is clear that every Dedekind module is a D1-module.

An R-module M is called a multiplication module if every submodule
N of M has the form IM for some ideal I of R. Note that I ⊆ (N : M)
and hence N = IM ⊆ (N : M)M ⊆ N , so that N = (N : M)M . A
proper submodule N of an R-module M is called prime if whenever rm ∈
N for some r ∈ R and m ∈M , then m ∈ N or rM ⊆ N . An R-module
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M is called cancellation if for ideals I and J of R, IM = JM implies I =
J [7]. Finitely generated faithful multiplication modules are cancellation
[9, Corollary to Theorem 9]. In particular, faithful multiplication module
over an integral domain is cancellation [5, Theorem 3.1].

In this paper we first extend Chisenese Remainder Theorem in ring
theory to modules under some conditions and give some properties. Also,
we define the product of submodules of a multiplication module and will
give characterizations of faithful multiplication Dedekind modules.

2. Chinese Remainder Theorem in Module

In this section we extend Chinese Reminder Theorem in Ring to
module. We begin with the following Lemma.

Lemma. Let I1, · · · , In be ideals of a ring R and M an R-module.
Let φ : M −→M/I1M

⊕
· · ·

⊕
M/InM be given by φ(m) = (φ1(m), · · · ,

φn(m)), where φi : M −→ M/IiM is the natural R-module homomor-
phism. Then,

(1) If I1, · · · , In are comaximal then φ is surjective.
(2) If M is cancellation and φ is surjective then I1, · · · , In are co-

maximal.
(3) φ is injective if and only if

⋂n
i=1 IiM = 0.

(4) IfM is cancellation then φ is bijective if and only if
⋂n

i=1 IiM = 0
and I1, · · · , In are comaximal.

Proof. (1) If n = 1, then it is clear. For n = 2, let φ : M −→
M/I1M

⊕
M/I2M . Let (m1,m2) ∈ M/I1M

⊕
M/I2M . Since I1 +

I2 = R, there exist e1 ∈ I1, e2 ∈ I2 such that e1 + e2 = 1. Put m =
e1m2 + e2m1. Then φ1(m) = e1m2 + e2m1 = e2m1 = (1− e1)m1 = m1.
Similarly φ2(m) = m2. Hence there exist m ∈ M such that φ(m) =
(φ1(m), φ2(m)) = (m1,m2) and φ is surjective.

Assume that we have proved the result for n = 1, · · · , k − 1.
R = Rk−1 = (Ik + I1)(Ik + I2) · · · (Ik + Ik−1) ⊆ Ik + I1 · · · Ik−1 ⊆

Ik +
⋂k−1

i=1 Ii. So R = Ik +
⋂k−1

i=1 Ii. So there exist y ∈
⋂k−1

i=1 Ii and z ∈ Ik
such that 1 = y + z.

For any element (m1, · · · ,mk−1,mk) ∈M/I1M
⊕
· · ·

⊕
M/IkM , there

exists m ∈ M such that φi(m) = mi for i = 1, · · · , k − 1. Now let
n = zm + ymk. Then φk(n) = zm + ymk + IkM = ymk + IkM =
(1− z)mk + IkM = mk + IkM = mk

For i = 1, · · · , k − 1, φi(n) = n + IiM = zm + ymk + IiM = (1 −
y)m+ IiM = m+ IiM = φi(m) = mi.
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Hence φ(n) = (φ1(n), · · · , φk−1(n), φk(n))= (m1, · · · ,mk). So we
complete our induction.

(2) Suppose that M is cancellation and φ is surjective. Then we
can assume that a map φij : M −→ M/IiM

⊕
M/IjM defined by

φij(m) = (φi(m), φj(m)) is surjective where 1 ≤ i 6= j ≤ n. Let m be
any element in M . Since φij is surjective, there exist mi ∈ M,mj ∈
M such that φij(mi) = (φi(mi), φj(mi)) = (m + IiM, 0 + IjM) and
φij(mj) = (φi(mj), φj(mj) = (0 + IiM,m+ IjM).

Here we get m+ IiM = φi(mi) = mi + IiM and 0 + IjM = φj(mi) =
mi + IjM . Also we have 0 + IiM = φi(mj) = mj + IiM,m + IjM =
φj(mj) = mj + IjM , Hence m −mi ∈ IiM , m −mj ∈ IjM , mi ∈ IjM
and mj ∈ IiM .

Therefore, φij(m − (mi + mj)) = φij(m) − (φij(mi) + φij(mj)) =
(m+ IiM,m+ IjM)− (m+ IiM,m+ IjM) = (0, 0).

Hence m − (mi + mj) ∈ Kerφij = IiM
⋂
IjM ⊆ IiM + IjM since

m−mi ∈ IiM , m−mj ∈ IjM,mi ∈ IjM and mj ∈ IiM.
Moreover since mi + mj ∈ IjM + IiM,m ∈ IiM + IjM . So M =

IiM + IjM . Now we get R = Ii + Ij from the condition that M is
cancellation.

(3) and (4) are trivial since kerφ =
⋂n

i=1 IiM .

Compare the following theorem with [4, Theorem 2.11].

Theorem 2.1. Let R be an integral domain, M a faithful multipli-
cation module over R and let I1, · · · , In be ideals of R. Let φ : M −→
M/I1M

⊕
· · ·

⊕
M/InM be given by φ(m) = (φ1(m), · · · , φn(m)), where

φi : M −→M/IiM is the natural R-module homomorphism. Then,
(1) φ is surjective if and only if I1, · · · , In are comaximal.
(2) φ is injective if and only if I1

⋂
· · ·

⋂
In = 0.

(3) φ is bijective if and only if
⋂n

i=1 Ii = 0 and I1, · · · , In are comax-
imal.

Proof. Since M is a faithful multiplication module over a domain, M
is finitely generated [5, Theorem 3.1] and hence M is cancellation [9,
Corollary to Theorem 9].

(1) It follows from Lemma (1) and (2).
(2) By [3, Theorem 1.6] we know that I1M

⋂
· · ·

⋂
InM = (I1

⋂
· · ·⋂

In)M.
Hence φ is injective if and only if 0 = I1M

⋂
· · ·

⋂
InM .

From fact that M is cancellation, we know that 0 = (I1
⋂
· · ·

⋂
In)M

if and only if 0 = I1
⋂
· · ·

⋂
In.
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Corollary 2.2. Let R be an integral domain, M a faithful multipli-
cation R-module and let I1, · · · , In be comaximal ideals of R.

Then M/I1M
⋂
· · ·

⋂
InM ∼= M/I1M

⊕
· · ·

⊕
M/InM .

3. Multiplication Dedekind Modules

In this section we define the product of submodules in module and
find some characterizations of faithful multiplication Dedekind modules.

Definition 3.1. Let M be a module over a ring R and N be a
submodule of M such that N = IM for some ideal of R. Then we say
that I is a presentation ideal of N . Let N = IM and K = JM for some
ideals I and J of R. The product of N and K, NK,is defined by IJM .

Note that it is possible that for a submodule N no such presentation
exist. For example, if V is a vector space over any field with subspace
W ( 6= 0, 6= V ), then W has not any presentation. Clearly, every submod-
ule of M has a presentation ideal if and only if M is a multiplication
module. Also, the product of N and K is independent of presentation
ideals of N and K and so, the product of submodules of multiplication
module is well defined [2, Theorem 3.4]. Clearly, NK is a submodule of
M and NK ⊆ N

⋂
K.

Now we generalize a well known property about Dedekind domain
using the product of submodules in multiplication module. Compare
the following Theorem with [6, Theorem 15, p.731].

Theorem 3.2. Let M be a faithful multiplication module over a
domain R. Then the following conditions are equivalent.

(1) M is a Dedekind module.
(2) Every nonzero proper submodule of M can be expressed as a finite

product of prime submodules.

Proof. (1) ⇒ (2) Let N(6= 0) be a proper submodule of M . Since
M is a multiplication module, there exists an ideal I of R such that
N = IM and I( 6= 0) is proper. R is a Dedekind domain [8, Theorem
3.5], I = pr11 · · · prss for some prime ideals pi of R [6, Theorem 15, p.731].
Hence N = IM = pr11 · · · prss M = (p1M)r1 · · · (psM)rs and piM is a
prime submodules of M [3, Corollary 2.11].

(2) ⇒ (1) Let I 6= 0 be any proper ideal of R. Then IM(6= 0) is a
proper submodule of M since M is a cancellation module [5, Theorem

3.1]. IM = P k1
1 · · ·P kn

n where Pi is a prime submodule of M and ki ≥ 1.
Here pi = (Pi : M) is a prime ideal of R [3, Corollary 2.3]. Since M is a
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multiplication module, P ki
i = [(Pi : M)M ]ki = (Pi : M)kiM. So IM =

(P1 : M)k1 · · · (Pn : M)knM . From the fact that M is a cancellation

module, I = pk11 · · · pknn and hence R is a Dedekind Domain [6, Theorem
15, p.731] and M is a Dedekind Module [8, Theorem 3.4].

Proposition 3.3. If M is a multiplication Dedekind module over a
ring R then M is finitely generated.

Proof. Since M is Dedekind, M is D1-module and hence R/annM
is an integral domain [8, Corollary 2.2]. Hence R is an integral domain
and M is finitely generated [5, Theorem 3.1].

An R-module M is cyclic submodule module , CSM, if every submod-
ule of M is cyclic. So M is a cyclic.

Theorem 3.4. Let M be a faithful multiplication Dedekind module
over a ringR. For nonzero comaximal ideals I1 · · · In ofR, M/I1M

⊕
· · ·⊕

M/InM is a CSM.

Proof. Since R is an integral domain [8, Corollary 2.2], I1 · · · In 6= 0.
(I1 · · · In)M = (I1

⋂
· · ·

⋂
In)M = I1M

⋂
· · ·

⋂
InM [3, Theorem 1.6]

and M/I1M
⋂
· · ·

⋂
InM ∼= M/I1M

⊕
· · ·

⊕
M/InM by Corollary 2.2.

SinceM is a cancellation module, (I1 · · · In)M 6= 0 and henceM/I1 · · ·
InM is a CSM [1, Corollary 2.9].

Therefore M/I1M
⋂
· · ·

⋂
M/InM ∼= M/I1M

⊕
· · ·

⊕
M/InM is a

CSM.

A submodule P of an R-module M is called indecomposable if for all
ideals I of R and submodules N of M, P = IN implies that P = N or
P = IM.

Theorem 3.5. Let M be a faithful multiplication Dedekind module
over a ring R and P a proper submodule of M . Then P is prime if and
only if P is indecomposable.

Proof. Assume that P is not indecomposable submodule of M . Then
there exist an ideal I of R and a submodule N of M such that P =
IN, P 6= N and P 6= IM. So there exist n ∈ N − P and

∑s
i=1 rimi ∈

IM−P . Here ri ∈ I,mi ∈M . Hence there exist k (1 ≤ k ≤ s) such that
rkmk /∈ P . Then rkn ∈ IN = P, rk /∈ (P : M) and n /∈ P . This means
that P is not prime. Conversely, suppose that P is indecomposable. By
our assumption, R is an integral domain [8, Corollary 2.2]. If P = 0 then
P = 0M for a prime ideal 0 of R and hence P is prime. Let P 6= 0. By
Theorem 3.2, P = P r1

1 · · ·P rs
s where Pi is a prime submodule of M . Put
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pi = (Pi : M). Then Pi = (Pi : M)M = piM . Hence P = pr11 · · · prnn M
where ri ≥ 1 and pi is a prime ideal of R [3, Corollary 2.11]. Since
P = (pr11 · · · prn−1

n )(pnM) and P is indecomposable, P = pnM which
is prime [3, Corollary 2.11] or P = pr11 · · · prn−1

n M . If we continue this
process then we conclude that P is prime.

Theorem 3.6. Let M be a faithful multiplication Dedekind module
over a ring R. Then any non zero submodule N of M is finitely generated
faithful multiplication.

Proof. N is invertible and M is finitely generated by [5, Theorem 3.1]
and [8, Corollary 2.2]. The result comes from [1, Proposition 1.1].
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