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ON BOUNDED SOLUTIONS OF
PEXIDER-EXPONENTIAL FUNCTIONAL INEQUALITY

JAEYOUNG CHUNG, CHANG-KwON CHOI* AND BOGEUN LEE

Abstract. Let G be a commutative group which is 2-divisible, R
the set of real numbers and f,g : G — R. In this article, we
investigate bounded solutions of the Pexider-exponential functional
inequality |f(z +y) — f(z)g(y)| < € for all z,y € G.

1. Introduction

Let G be a commutative group which is 2-divisible, R the set of real
numbers and €,6 > 0. It is well known that if f : G — R satisfies the
exponential functional inequality

(L.1) [fz+y) = fl@)fly) <e

for all z,y € G, then f is an unbounded function satisfying

flz+y) = f(x)f(y)

for all x,y € G, or a bounded function satisfying

Fa)] < TR

for all z € G (see Baker[3], Baker-Lawrence-Zorzitto[4]). In particular,
if G =V, where V is a vector space over the filed Q of rational numbers
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and f : V — R is a bounded function satisfying (1.1) for 0 < e < %,
then f satisfies either

1+\/1—46§f(x)§ 14+ 14 4e
2 2
for all x € V, or else
1—+v1-4
< fla) < Y

for all © € V (see Albert and Baker[2]). It is not easy to describe
behavior of bounded solutions when two or more unknown functions are
involved in a functional inequality. In this paper, we generalize the result
of Albert and Baker[2] and investigate bounded solutions f,g: G — R
of the inequality

(1.2) fx+y) — f@)g(y)| < e

for all x,y € G under a natural assumption. As a result, we prove the
following.

Theorem 1.1. Let (f, g) be a pair of functions satisfying (1.2). Then
either (f, g) satisfies

(1.3) flx+y)=fx)g(y)
for all x,y € G, or else (f,g) satisfies
(1.4) l9(z +y) — g(x)g(y)| < ke,
(1.5) |f(x) = f(0)g(z)| < e
for all x,y € G, where
k= 2LMQ, My =sup|f(y)l, My =suplg(y)|.
f yeG yeG

In particular, if ke < %, then we have

-

My’
(1.7) [f(z) = f0)] < 2¢
for all x € G.

(L6) g(e) 1] <
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2. Proof of Theorem 1.1

As a generalization of the result of Albert and Baker[2] we first in-
vestigate bounded solutions of the exponential functional inequality

(2.1) l9(z +y) —g(z)g(y)| <o
for all z, y € G.

Lemma 2.1. Suppose 0 < § < % and g : G — R is a bounded
function satisfying (2.1). Then, g satisfies either

(2:2) lg(x)] <26
for all x € G, or

(2.3) lg() — 1] <26
for all x € G.

Proof. Replacing x and y by § in (2.1) we have

2
>g(2) —6>—
(2.4) g(x) > g <2> )
for all x € G. Let g(0) = . Putting z =y =0 in (2.1) we have
8- 8% <.

Thus, we have either

1—+/1446 1—+v1—-45

2. <p<
25) R cp IR
or

1++vV1—46 1++vV1+46
(2.6) % <B< %
If (2.5) holds, putting y = 0 in (2.1) and dividing the result by 1 — 8 we
have

0 1—+v1—-46

This gives (2.2). Now, assume that (2.6) holds. If g(z¢) < 0 for some
xo € G, putting = = xg, y = —x¢ in (2.1) we have

1 1 1

Il _ T <B_§5< _

1-5 158-90< 9(z0)g(—0),

which implies g(—z¢) < 0. Thus, from (2.4) we have
—0 < g(zg) <0, —6<g(—z0) <0.
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Thus, we have the contradiction
1 , 1
- < — < < —.
1 S 9(@o)g(—20) <07 < 1
Thus, we have g(z) > 0 for allz € G. Let M := sup,cq g(x). Replacing
y by y — x in (2.1) and using the result we have

9(y) =6 _ gly) =0
2.7 x) > >
(.1 ole) > S5 > M
for all z,y € G such that g(y) —0 > 0. Let K = {y € G : g(y) > ¢}.
Then, from (2.7) we have

(28)  glw) > sup (W) el (g(% 5) - M% :

for all x € G. Taking the supremum of the left hand side of (2.8) and
multiplying both sides of the result by M, we have

(2.9) M? — Mg+ 6 > 0.
Since My > > %, it follows from (2.9) that

1++v1-—-49
(2.10) M, > %

From (2.8) and (2.10) we have

4] Zl+ 1—-49

(2.11) glz) >1— Mg 5

for all x € G. Finally, it is well known in [4] that every bounded solution
of (2.1) satisfies the inequality

(2.12) o) < VIR

for all z € G. Thus, from (2.11) and (2.12) we have

14+ V- 141+ 40
1+21 B 1< 1+21+ <

for all x € G. This gives (2.3). Thus, we complete the proof. O

—20 <

We also use the following result [5].

Lemma 2.2. Let f,g: G — R be bounded functions satisfying the
functional inequality

(2.13) F@+y) - f@)g)| < e
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for all x,y € G. Then f, g satisfy

(2.14) [f@) (A =g < e
for all x,y € G.

Proof of Theorem 1.1. First, we assume that g is unbounded. Let
Yn, n =1,2,3,..., be a sequence in G such that |g(y,)| — co. Putting
y = yp in (1.2), dividing the result by |g(y,)| and letting n — oo we
have

(2.15) flo) = g, 9(yn)
for all € G. Multiplying both sides of (2.15) by ¢(y) and using (1.2)
and (2.15) we have
[+ y)g(y)
— ljm DT IIIY)
f@)gly) = Hm ===
— lim f@+y+uyn)
N300 9(yn)
= f(z+y)

for all x,y € G. This gives (1.3). Now, we assume that g is bounded.
From inequality (1.2) we have

[f()lg(x +y) —g(x)gW)| <[f(2)g(z +y) — f(z+y+2)]
+fE+e+y) - fz+2)9(y)]
+1f(z+2)9(y) — f(2)g9(x)g(y))]

<(2+1g(y)De

for all z,y,z € G. It follows from (2.16) that

(2.17) lg(z +vy) — g(z)g(y)| < <2’;‘(i\>4‘g>

for all z,y,z € G. Taking the infimum of the right hand side of (2.17)
with respect to z we have
2+Mﬂ
€

(2.18) o(e +9) st < (257

for all z,y € G. Thus, we have (1.4). Now, putting x = 0 in (1.2) we
have (1.5). In particular, if

(2.19) ::C*Mﬁeg,

(2.16)
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then by Lemma 2.1, g satisfies either

(2.20) lg(x)] < 26
for all z € G, or
(2.21) lg() — 1] < 26

for all x € G. Assume that g satisfies (2.20). Replacing y by y — z in
(1.2) and using the triangle inequality we have

If W)l < [f(2)g(y —2)| + e

(2.22) < 20f(z)| + €

1
< §Mf + €
for all y € G. Taking the supremum of the left hand side of (2.22) we
have
(2.23) My < 2,

which contradicts (2.19). Therefore, g satisfies (2.21). From (2.19) and
(2.21) we have

3

(2.24) lg(z)] < ]1—g(x)|+1§2(5+1§§
for all z € G. Thus, from (2.21) and (2.24) we have

2+3 Te

2.2 —1<28<2(—2|e=—

(225) o) ~ 1] < 25 < (Mf>e i

for all x € G. From (2.19) we have A% < 1. Thus, from (2.25) we have

g(z) > 0 for all z € G. Now, by Lemma 2.2 we have

[f@)[1—gy) <e
for all z,y € G. Thus, we have

€
2.26 -1 < —
(2.26) o() =11 < 57
for all x € G. This gives (1.6). Multiplying (2.26) by |f(0)| we have
(2.27) FOg(a) - £ < T < o

f

for all x € G. Putting x = 0 in (1.2) we have
(2.28) [f(y) = F(0)g(y)| <€
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for all y € G. Using the triangle inequality with (2.27) and (2.28) we
have

(2.29) () — FO)] < 2
for all z € G. This gives (1.7). Thus, we complete the proof.

Remark 2.3. If f is not extremely small and g is not extremely
large as € — 0, then (f,g) satisfies the condition (2.19). The opposite
case when f is sufficiently small as ¢ — 0 can be treated as a trivial case.
For example, if My /e is bounded as € — 0, i.e.,

(2.30) My < ke

for some k > 0 as € — 0, then we can easily describe the behavior of g
satisfying (1.2). Indeed, using the triangle inequality we have

(2.31) [f(@)gW)] < |f(z+y)|+e< (1+k)e
for all z,y € G. Thus, from (2.31) we have
1+k
2.32 < | —
(232) o)) < (557 )

for all y € G. If f, g satisfies (2.30) and (2.32) respectively, then we have

lf(x+y) = f@)gW)| < [fl@z+y)+|f(2)gy)

(2.33) <ket (1+k)e=(1+2k)e

for all z,y € G. Thus, we have

[f(x+y) = f(2)g(y)] = O(e)

as € — 0.

Remark 2.4. We can also find the behavior of f when g is near 0.
Assume that g satisfies

(2.34) lg(z)| <r <1

for all x € G, then replacing y by y — z in (1.2) and using the triangle
inequality we have

F < [f(@)g(y — )| + €
(2.35) <r|f(z) +e€
<rM;+e



136 Jaeyoung Chung, Chang-Kwon Choi and Bogeun Lee

for all y € G. Taking the supremum in the left hand side of (2.35) we
have
€
2.36 My < .
(2.36) g
If g and f satisfy (2.34) and (2.36) respectively, then we have

[f (@ +y) = F@)g)] < [f @+ )+ [f()]lg(y)]

147
<
<(157)e
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