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ON BOUNDED SOLUTIONS OF

PEXIDER-EXPONENTIAL FUNCTIONAL INEQUALITY

Jaeyoung Chung, Chang-Kwon Choi∗ and Bogeun Lee

Abstract. Let G be a commutative group which is 2-divisible, R
the set of real numbers and f, g : G → R. In this article, we
investigate bounded solutions of the Pexider-exponential functional
inequality |f(x+ y)− f(x)g(y)| ≤ ε for all x, y ∈ G.

1. Introduction

Let G be a commutative group which is 2-divisible, R the set of real
numbers and ε, δ ≥ 0. It is well known that if f : G → R satisfies the
exponential functional inequality

(1.1) |f(x+ y)− f(x)f(y)| ≤ ε

for all x, y ∈ G, then f is an unbounded function satisfying

f(x+ y) = f(x)f(y)

for all x, y ∈ G, or a bounded function satisfying

|f(x)| ≤ 1 +
√

1 + 4ε

2

for all x ∈ G (see Baker[3], Baker-Lawrence-Zorzitto[4]). In particular,
if G = V , where V is a vector space over the filed Q of rational numbers

Received February 20, 2013. Accepted March 13, 2013.
2010 Mathematics Subject Classification. 39B82.
Key words and phrases. bounded solution, exponential function, Pexider-

exponential functional inequality.
This work was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (MEST) (no. 2012008507).

∗Corresponding author



130 Jaeyoung Chung, Chang-Kwon Choi and Bogeun Lee

and f : V → R is a bounded function satisfying (1.1) for 0 ≤ ε ≤ 1
4 ,

then f satisfies either

1 +
√

1− 4ε

2
≤ f(x) ≤ 1 +

√
1 + 4ε

2

for all x ∈ V , or else

−ε ≤ f(x) ≤ 1−
√

1− 4ε

2

for all x ∈ V (see Albert and Baker[2]). It is not easy to describe
behavior of bounded solutions when two or more unknown functions are
involved in a functional inequality. In this paper, we generalize the result
of Albert and Baker[2] and investigate bounded solutions f, g : G → R
of the inequality

(1.2) |f(x+ y)− f(x)g(y)| ≤ ε

for all x, y ∈ G under a natural assumption. As a result, we prove the
following.

Theorem 1.1. Let (f, g) be a pair of functions satisfying (1.2). Then
either (f, g) satisfies

(1.3) f(x+ y) = f(x)g(y)

for all x, y ∈ G, or else (f, g) satisfies

|g(x+ y)− g(x)g(y)| ≤ kε,(1.4)

|f(x)− f(0)g(x)| ≤ ε(1.5)

for all x, y ∈ G, where

k =
2 +Mg

Mf
, Mf = sup

y∈G
|f(y)|, Mg = sup

y∈G
|g(y)|.

In particular, if kε ≤ 1
4 , then we have

|g(x)− 1| ≤ ε

Mf
,(1.6)

|f(x)− f(0)| ≤ 2ε(1.7)

for all x ∈ G.
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2. Proof of Theorem 1.1

As a generalization of the result of Albert and Baker[2] we first in-
vestigate bounded solutions of the exponential functional inequality

(2.1) |g(x+ y)− g(x)g(y)| ≤ δ

for all x, y ∈ G.

Lemma 2.1. Suppose 0 ≤ δ ≤ 1
4 and g : G → R is a bounded

function satisfying (2.1). Then, g satisfies either

(2.2) |g(x)| ≤ 2δ

for all x ∈ G, or

(2.3) |g(x)− 1| ≤ 2δ

for all x ∈ G.

Proof. Replacing x and y by x
2 in (2.1) we have

(2.4) g(x) ≥ g
(x

2

)2
− δ ≥ −δ

for all x ∈ G. Let g(0) = β. Putting x = y = 0 in (2.1) we have

|β − β2| ≤ δ.

Thus, we have either

(2.5)
1−
√

1 + 4δ

2
≤ β ≤ 1−

√
1− 4δ

2
,

or

(2.6)
1 +
√

1− 4δ

2
≤ β ≤ 1 +

√
1 + 4δ

2
.

If (2.5) holds, putting y = 0 in (2.1) and dividing the result by 1− β we
have

|g(x)| ≤ δ

1− β
≤ 1−

√
1− 4δ

2
≤ 2δ.

This gives (2.2). Now, assume that (2.6) holds. If g(x0) ≤ 0 for some
x0 ∈ G, putting x = x0, y = −x0 in (2.1) we have

1

4
=

1

2
− 1

4
≤ β − δ ≤ g(x0)g(−x0),

which implies g(−x0) ≤ 0. Thus, from (2.4) we have

−δ ≤ g(x0) ≤ 0, −δ ≤ g(−x0) ≤ 0.
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Thus, we have the contradiction

1

4
≤ g(x0)g(−x0) ≤ δ2 ≤

1

16
.

Thus, we have g(x) > 0 for all x ∈ G. Let Mg := supx∈G g(x). Replacing
y by y − x in (2.1) and using the result we have

(2.7) g(x) ≥ g(y)− δ
g(y − x)

≥ g(y)− δ
Mg

for all x, y ∈ G such that g(y) − δ ≥ 0. Let K = {y ∈ G : g(y) ≥ δ}.
Then, from (2.7) we have

(2.8) g(x) ≥ sup
y∈K

(
g(y)− δ
Mg

)
= sup

y∈G

(
g(y)− δ
Mg

)
=
Mg − δ
Mg

for all x ∈ G. Taking the supremum of the left hand side of (2.8) and
multiplying both sides of the result by Mg we have

(2.9) M2
g −Mg + δ ≥ 0.

Since Mg ≥ β ≥ 1
2 , it follows from (2.9) that

(2.10) Mg ≥
1 +
√

1− 4δ

2
.

From (2.8) and (2.10) we have

(2.11) g(x) ≥ 1− δ

Mg
≥ 1 +

√
1− 4δ

2

for all x ∈ G. Finally, it is well known in [4] that every bounded solution
of (2.1) satisfies the inequality

(2.12) g(x) ≤ 1 +
√

1 + 4δ

2

for all x ∈ G. Thus, from (2.11) and (2.12) we have

−2δ ≤ −1 +
√

1− 4δ

2
≤ g(x)− 1 ≤ −1 +

√
1 + 4δ

2
≤ δ

for all x ∈ G. This gives (2.3). Thus, we complete the proof.

We also use the following result [5].

Lemma 2.2. Let f, g : G → R be bounded functions satisfying the
functional inequality

(2.13) |f(x+ y)− f(x)g(y)| ≤ ε
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for all x, y ∈ G. Then f, g satisfy

(2.14) |f(x)(1− |g(y)|)| ≤ ε
for all x, y ∈ G.

Proof of Theorem 1.1. First, we assume that g is unbounded. Let
yn, n = 1, 2, 3, . . . , be a sequence in G such that |g(yn)| → ∞. Putting
y = yn in (1.2), dividing the result by |g(yn)| and letting n → ∞ we
have

f(x) = lim
n→∞

f(x+ yn)

g(yn)
(2.15)

for all x ∈ G. Multiplying both sides of (2.15) by g(y) and using (1.2)
and (2.15) we have

f(x)g(y) = lim
n→∞

f(x+ yn)g(y)

g(yn)

= lim
n→∞

f(x+ y + yn)

g(yn)

= f(x+ y)

for all x, y ∈ G. This gives (1.3). Now, we assume that g is bounded.
From inequality (1.2) we have

|f(z)||g(x+ y)− g(x)g(y)| ≤|f(z)g(x+ y)− f(x+ y + z)|
+ |f(z + x+ y)− f(z + x)g(y)|
+ |f(z + x)g(y)− f(z)g(x)g(y))|

≤(2 + |g(y)|)ε

(2.16)

for all x, y, z ∈ G. It follows from (2.16) that

|g(x+ y)− g(x)g(y)| ≤
(

2 +Mg

|f(z)|

)
ε(2.17)

for all x, y, z ∈ G. Taking the infimum of the right hand side of (2.17)
with respect to z we have

|g(x+ y)− g(x)g(y)| ≤
(

2 +Mg

Mf

)
ε(2.18)

for all x, y ∈ G. Thus, we have (1.4). Now, putting x = 0 in (1.2) we
have (1.5). In particular, if

(2.19) δ :=

(
2 +Mg

Mf

)
ε ≤ 1

4
,
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then by Lemma 2.1, g satisfies either

(2.20) |g(x)| ≤ 2δ

for all x ∈ G, or

(2.21) |g(x)− 1| ≤ 2δ

for all x ∈ G. Assume that g satisfies (2.20). Replacing y by y − x in
(1.2) and using the triangle inequality we have

|f(y)| ≤ |f(x)g(y − x)|+ ε

≤ 2δ|f(x)|+ ε

≤ 1

2
Mf + ε

(2.22)

for all y ∈ G. Taking the supremum of the left hand side of (2.22) we
have

Mf ≤ 2ε,(2.23)

which contradicts (2.19). Therefore, g satisfies (2.21). From (2.19) and
(2.21) we have

|g(x)| ≤ |1− g(x)|+ 1 ≤ 2δ + 1 ≤ 3

2
(2.24)

for all x ∈ G. Thus, from (2.21) and (2.24) we have

(2.25) |g(x)− 1| ≤ 2δ ≤ 2

(
2 + 3

2

Mf

)
ε =

7ε

Mf

for all x ∈ G. From (2.19) we have 7ε
Mf

< 1. Thus, from (2.25) we have

g(x) > 0 for all x ∈ G. Now, by Lemma 2.2 we have

|f(x)||1− g(y)| ≤ ε

for all x, y ∈ G. Thus, we have

(2.26) |g(x)− 1| ≤ ε

Mf

for all x ∈ G. This gives (1.6). Multiplying (2.26) by |f(0)| we have

(2.27) |f(0)g(x)− f(0)| ≤ |f(0)|
Mf

ε ≤ ε

for all x ∈ G. Putting x = 0 in (1.2) we have

|f(y)− f(0)g(y)| ≤ ε(2.28)
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for all y ∈ G. Using the triangle inequality with (2.27) and (2.28) we
have

(2.29) |f(x)− f(0)| ≤ 2ε

for all x ∈ G. This gives (1.7). Thus, we complete the proof.

Remark 2.3. If f is not extremely small and g is not extremely
large as ε → 0, then (f, g) satisfies the condition (2.19). The opposite
case when f is sufficiently small as ε→ 0 can be treated as a trivial case.
For example, if Mf/ε is bounded as ε→ 0, i.e.,

(2.30) Mf ≤ kε

for some k > 0 as ε → 0, then we can easily describe the behavior of g
satisfying (1.2). Indeed, using the triangle inequality we have

(2.31) |f(x)g(y)| ≤ |f(x+ y)|+ ε ≤ (1 + k)ε

for all x, y ∈ G. Thus, from (2.31) we have

(2.32) |g(y)| ≤
(

1 + k

Mf

)
ε

for all y ∈ G. If f, g satisfies (2.30) and (2.32) respectively, then we have

|f(x+ y)− f(x)g(y)| ≤ |f(x+ y) + |f(x)g(y)|
≤ kε+ (1 + k)ε = (1 + 2k)ε

(2.33)

for all x, y ∈ G. Thus, we have

|f(x+ y)− f(x)g(y)| = O(ε)

as ε→ 0.

Remark 2.4. We can also find the behavior of f when g is near 0.
Assume that g satisfies

|g(x)| ≤ r < 1(2.34)

for all x ∈ G, then replacing y by y − x in (1.2) and using the triangle
inequality we have

|f(y)| ≤ |f(x)g(y − x)|+ ε

≤ r|f(x)|+ ε

≤ rMf + ε

(2.35)
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for all y ∈ G. Taking the supremum in the left hand side of (2.35) we
have

Mf ≤
ε

1− r
.(2.36)

If g and f satisfy (2.34) and (2.36) respectively, then we have

|f(x+ y)− f(x)g(y)| ≤ |f(x+ y)|+ |f(x)||g(y)|

≤
(

1 + r

1− r

)
ε

for all x, y ∈ G.
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