DOI QR코드

DOI QR Code

A Memory Molecule, $Ca^{2+}$/Calmodulin-Dependent Protein Kinase II and Redox Stress: Key Factors for Arrhythmias in a Diseased Heart

  • Song, Young-Hwan (Department of Pediatrics, Sanggye Paik Hospital, College of Medicine, Inje University)
  • Published : 2013.03.30

Abstract

Arrhythmias can develop in various cardiac diseases, such as ischemic heart disease, cardiomyopathy and congenital heart disease. It can also contribute to the aggravation of heart failure and sudden cardiac death. Redox stress and $Ca^{2+}$ overload are thought to be the important triggering factors in the generation of arrhythmias in failing myocardium. From recent studies, it appears evident that $Ca^{2+}$/calmodulin- dependent protein kinase II (CaMKII) plays a central role in the arrhythmogenic processes in heart failure by sensing intracellular $Ca^{2+}$ and redox stress, affecting individual ion channels and thereby leading to electrical instability in the heart. CaMKII, a multifunctional serine/threonine kinase, is an abundant molecule in the neuron and the heart. It has a specific property as "a memory molecule" such that the binding of calcified calmodulin ($Ca^{2+}/CaM$) to the regulatory domain on CaMKII initially activates this enzyme. Further, it allows autophosphorylation of T287 or oxidation of M281/282 in the regulatory domain, resulting in sustained activation of CaMKII even after the dissociation of $Ca^{2+}/CaM$. This review provides the understanding of both the structural and functional properties of CaMKII, the experimental findings of the interactions between CaMKII, redox stress and individual ion channels, and the evidences proving the potential participation of CaMKII and oxidative stress in the diverse arrhythmogenic processes in a diseased heart.

Keywords

References

  1. Krell MJ, Kline EM, Bates ER, et al. Intermittent, ambulatory dobutamine infusions in patients with severe congestive heart failure. Am Heart J 1986;112:787-91. https://doi.org/10.1016/0002-8703(86)90475-8
  2. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 1991;324:781-8. https://doi.org/10.1056/NEJM199103213241201
  3. Tomaselli GF, Barth AS. Sudden cardio arrest: oxidative stress irritates the heart. Nat Med 2010;16:648-9. https://doi.org/10.1038/nm0610-648
  4. Erickson JR, He BJ, Grumbach IM, Anderson ME. CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 2011;91:889-915. https://doi.org/10.1152/physrev.00018.2010
  5. Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 2005;123:849-60. https://doi.org/10.1016/j.cell.2005.10.029
  6. Rellos P, Pike AC, Niesen FH, et al. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol 2010;8:e1000426. https://doi.org/10.1371/journal.pbio.1000426
  7. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002;3:175-90. https://doi.org/10.1038/nrn753
  8. Lisman JE. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A 1985;82:3055-7. https://doi.org/10.1073/pnas.82.9.3055
  9. Bers DM, Grandi E. Calcium/calmodulin-dependent kinase II regulation of cardiac ion channels. J Cardiovasc Pharmacol 2009;54:180-7. https://doi.org/10.1097/FJC.0b013e3181a25078
  10. Anderson ME, Braun AP, Schulman H, Premack BA. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca(2+)-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ Res 1994;75:854-61. https://doi.org/10.1161/01.RES.75.5.854
  11. Yuan W, Bers DM. Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am J Physiol 1994; 267(3 Pt 2):H982-93.
  12. Xiao RP, Cheng H, Lederer WJ, Suzuki T, Lakatta EG. Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc Natl Acad Sci U S A 1994;91:9659-63. https://doi.org/10.1073/pnas.91.20.9659
  13. Erickson JR, Joiner ML, Guan X, et al. A dynamic pathway for calciumindependent activation of CaMKII by methionine oxidation. Cell 2008; 133:462-74. https://doi.org/10.1016/j.cell.2008.02.048
  14. Song YH, Cho H, Ryu SY, et al. L-type Ca(2+) channel facilitation mediated by H(2)O(2)-induced activation of CaMKII in rat ventricular myocytes. J Mol Cell Cardiol 2010;48:773-80. https://doi.org/10.1016/j.yjmcc.2009.10.020
  15. Song YH, Choi E, Park SH, et al. Sustained CaMKII activity mediates transient oxidative stress-induced long-term facilitation of L-type Ca (2+) current in cardiomyocytes. Free Radic Biol Med 2011;51:1708-16. https://doi.org/10.1016/j.freeradbiomed.2011.07.022
  16. Gradman AH. Evolving understanding of the renin-angiotensin-aldosterone system: pathophysiology and targets for therapeutic intervention. Am Heart J 2009;157(6 Suppl):S1-6. https://doi.org/10.1016/j.ahj.2009.04.005
  17. Cingolani HE, Villa-Abrille MC, Cornelli M, et al. The positive inotropic effect of angiotensin II: role of endothelin-1 and reactive oxygen species. Hypertension 2006;47:727-34. https://doi.org/10.1161/01.HYP.0000208302.62399.68
  18. Talukder MA, Endoh M. Pharmacological differentiation of synergistic contribution of L-type Ca2+ channels and Na+/H+ exchange to the positive inotropic effect of phenylephrine, endothelin-3 and angiotensin II in rabbit ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol 1997;355:87-96.
  19. Boron WF, Boulpaep EL. Medical Physiology: A Molecular and Cellular Approach. Philadelphia, PA: Saunders;2005. p.1319.
  20. Mangmool S, Shukla AK, Rockman HA. beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation. J Cell Biol 2010;189:573-87. https://doi.org/10.1083/jcb.200911047
  21. Wang W, Zhu W, Wang S, et al. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 2004;95:798-806. https://doi.org/10.1161/01.RES.0000145361.50017.aa
  22. Anderson ME. Calmodulin kinase signaling in heart: an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther 2005;106:39-55. https://doi.org/10.1016/j.pharmthera.2004.11.002
  23. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998;93:215-28. https://doi.org/10.1016/S0092-8674(00)81573-1
  24. Khoo MS, Li J, Singh MV, et al. Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation 2006;114:1352-9. https://doi.org/10.1161/CIRCULATIONAHA.106.644583
  25. Hashambhoy YL, Winslow RL, Greenstein JL. CaMKII-induced shift in modal gating explains L-type Ca(2+) current facilitation: a modeling study. Biophys J 2009;96:1770-85. https://doi.org/10.1016/j.bpj.2008.11.055
  26. Koval OM, Guan X, Wu Y, et al. CaV1.2 beta-subunit coordinates CaMKII- triggered cardiomyocyte death and afterdepolarizations. Proc Natl Acad Sci U S A 2010;107:4996-5000. https://doi.org/10.1073/pnas.0913760107
  27. Grueter CE, Abiria SA, Dzhura I, et al. L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol Cell 2006;23:641-50. https://doi.org/10.1016/j.molcel.2006.07.006
  28. Wagner M, Rudakova E, Volk T. Aldosterone-induced changes in the cardiac L-type Ca(2+) current can be prevented by antioxidants in vitro and are absent in rats on low salt diet. Pflugers Arch 2008;457: 339-49. https://doi.org/10.1007/s00424-008-0518-1
  29. Zeng Q, Zhou Q, Yao F, O'Rourke ST, Sun C. Endothelin-1 regulates cardiac L-type calcium channels via NAD(P)H oxidase-derived superoxide. J Pharmacol Exp Ther 2008;326:732-8. https://doi.org/10.1124/jpet.108.140301
  30. Bennett PB, Yazawa K, Makita N, George AL Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995;376:683-5. https://doi.org/10.1038/376683a0
  31. Maltsev VA, Silverman N, Sabbah HN, Undrovinas AI. Chronic heart failure slows late sodium current in human and canine ventricular myocytes: implications for repolarization variability. Eur J Heart Fail 2007;9:219-27. https://doi.org/10.1016/j.ejheart.2006.08.007
  32. Aiba T, Hesketh GG, Liu T, et al. Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res 2010;85:454-63. https://doi.org/10.1093/cvr/cvp324
  33. Wagner S, Dybkova N, Rasenack EC, et al. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 2006;116:3127-38. https://doi.org/10.1172/JCI26620
  34. Hund TJ, Koval OM, Li J, et al. A $\beta$(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest 2010;120:3508-19. https://doi.org/10.1172/JCI43621
  35. Maltsev VA, Reznikov V, Undrovinas NA, Sabbah HN, Undrovinas A. Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol 2008;294:H1597-608. https://doi.org/10.1152/ajpheart.00484.2007
  36. Song Y, Shryock JC, Wagner S, Maier LS, Belardinelli L. Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther 2006;318: 214-22. https://doi.org/10.1124/jpet.106.101832
  37. Kassmann M, Hansel A, Leipold E, et al. Oxidation of multiple methionine residues impairs rapid sodium channel inactivation. Pflugers Arch 2008;456:1085-95. https://doi.org/10.1007/s00424-008-0477-6
  38. El-Haou S, Balse E, Neyroud N, et al. Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res 2009;104:758-69. https://doi.org/10.1161/CIRCRESAHA.108.191007
  39. Li J, Marionneau C, Koval O, et al. Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current. Channels (Austin) 2007;1:387-94. https://doi.org/10.4161/chan.5449
  40. Wagner S, Hacker E, Grandi E, et al. Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2009; 2:285-94. https://doi.org/10.1161/CIRCEP.108.842799
  41. House SJ, Singer HA. CaMKII-delta isoform regulation of neointima formation after vascular injury. Arterioscler Thromb Vasc Biol 2008;28:441-7. https://doi.org/10.1161/ATVBAHA.107.156810
  42. Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 2002;364(Pt 3):593-611. https://doi.org/10.1042/BJ20020228
  43. Timmins JM, Ozcan L, Seimon TA, et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 2009;119:2925-41. https://doi.org/10.1172/JCI38857
  44. Goldhaber JI, Liu E. Excitation-contraction coupling in single guineapig ventricular myocytes exposed to hydrogen peroxide. J Physiol 1994; 477(Pt 1):135-47. https://doi.org/10.1113/jphysiol.1994.sp020178
  45. Su Z, Limberis J, Martin RL, et al. Functional consequences of methionine oxidation of hERG potassium channels. Biochem Pharmacol 2007; 74:702-11. https://doi.org/10.1016/j.bcp.2007.06.002
  46. Tang XD, Daggett H, Hanner M, et al. Oxidative regulation of large conductance calcium-activated potassium channels. J Gen Physiol 2001;117:253-74. https://doi.org/10.1085/jgp.117.3.253
  47. Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 2004;94:e61-70. https://doi.org/10.1161/01.RES.0000125626.33738.E2
  48. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2+/calmodulin- dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 2005;97:1314-22. https://doi.org/10.1161/01.RES.0000194329.41863.89
  49. Belevych AE, Terentyev D, Viatchenko-Karpinski S, et al. Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 2009;84:387-95. https://doi.org/10.1093/cvr/cvp246
  50. Mattiazzi A, Kranias EG. CaMKII regulation of phospholamban and SR Ca2+ load. Heart Rhythm 2011;8:784-7. https://doi.org/10.1016/j.hrthm.2010.11.035
  51. Kranias EG, Gupta RC, Jakab G, Kim HW, Steenaart NA, Rapundalo ST. The role of protein kinases and protein phosphatases in the regulation of cardiac sarcoplasmic reticulum function. Mol Cell Biochem 1988;82:37-44.
  52. Zhang T, Guo T, Mishra S, et al. Phospholamban ablation rescues sarcoplasmic reticulum Ca(2+) handling but exacerbates cardiac dysfunction in CaMKIIdelta(C) transgenic mice. Circ Res 2010;106:354-62. https://doi.org/10.1161/CIRCRESAHA.109.207423
  53. Guo J, Giles WR, Ward CA. Effect of hydrogen peroxide on the membrane currents of sinoatrial node cells from rabbit heart. Am J Physiol Heart Circ Physiol 2000;279:H992-9. https://doi.org/10.1152/ajpheart.2000.279.3.H992
  54. Satoh N, Nishimura M, Watanabe Y. Electrophysiologic alterations in the rabbit nodal cells induced by membrane lipid peroxidation. Eur J Pharmacol 1995;292:233-40.
  55. Rigg L, Mattick PA, Heath BM, Terrar DA. Modulation of the hyperpolarization- activated current (I(f)) by calcium and calmodulin in the guinea-pig sino-atrial node. Cardiovasc Res 2003;57:497-504. https://doi.org/10.1016/S0008-6363(02)00668-5
  56. Swaminathan PD, Purohit A, Soni S, et al. Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest 2011;121:3277-88. https://doi.org/10.1172/JCI57833
  57. Wu Y, Gao Z, Chen B, et al. Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proc Natl Acad Sci U S A 2009;106: 5972-7. https://doi.org/10.1073/pnas.0806422106
  58. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 1991;22:983-8. https://doi.org/10.1161/01.STR.22.8.983
  59. Dudley SC Jr, Hoch NE, McCann LA, et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation 2005;112: 1266-73. https://doi.org/10.1161/CIRCULATIONAHA.105.538108
  60. Kim YM, Guzik TJ, Zhang YH, et al. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res 2005;97:629-36. https://doi.org/10.1161/01.RES.0000183735.09871.61
  61. Tessier S, Karczewski P, Krause EG, et al. Regulation of the transient outward K(+) current by Ca(2+)/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 1999;85:810-9. https://doi.org/10.1161/01.RES.85.9.810
  62. Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 1999;84:776-84. https://doi.org/10.1161/01.RES.84.7.776
  63. Smyth JW, Hong TT, Gao D, et al. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest 2010;120:266-79. https://doi.org/10.1172/JCI39740
  64. Chelu MG, Sarma S, Sood S, et al. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 2009;119:1940-51.
  65. Lo LW, Chen YC, Chen YJ, Wongcharoen W, Lin CI, Chen SA. Calmodulin kinase II inhibition prevents arrhythmic activity induced by alpha and beta adrenergic agonists in rabbit pulmonary veins. Eur J Pharmacol 2007;571:197-208. https://doi.org/10.1016/j.ejphar.2007.05.066
  66. Wu Y, Temple J, Zhang R, et al. Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation 2002;106: 1288-93. https://doi.org/10.1161/01.CIR.0000027583.73268.E7
  67. Zhang R, Khoo MS, Wu Y, et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 2005;11:409-17. https://doi.org/10.1038/nm1215
  68. Picht E, DeSantiago J, Huke S, Kaetzel MA, Dedman JR, Bers DM. CaMKII inhibition targeted to the sarcoplasmic reticulum inhibits frequency- dependent acceleration of relaxation and Ca2+ current facilitation. J Mol Cell Cardiol 2007;42:196-205. https://doi.org/10.1016/j.yjmcc.2006.09.007
  69. Xie LH, Chen F, Karagueuzian HS, Weiss JN. Oxidative-stress-induced after depolarizations and calmodulin kinase II signaling. Circ Res 2009;104:79-86.

Cited by

  1. Cardiomyocyte-Derived Mitochondrial Superoxide Causes Myocardial Electrical Remodeling by Downregulating Potassium Channels and Related Molecules vol.78, pp.8, 2013, https://doi.org/10.1253/circj.cj-13-1587