DOI QR코드

DOI QR Code

Advanced Cardiac MR Imaging for Myocardial Characterization and Quantification: T1 Mapping

  • Hwang, Sung Ho (Department of Radiology, Yonsei University College of Medicine) ;
  • Choi, Byoung Wook (Department of Radiology, Yonsei University College of Medicine)
  • 발행 : 2013.01.30

초록

Magnetic resonance as an imaging modality provides an excellent soft tissue differentiation, which is an ideal choice for cardiac imaging. Cardiac magnetic resonance (CMR) allows myocardial tissue characterization, as well as comprehensive evaluation of the structures. Although late gadolinium enhancement after injection of the gadolinium extracellular contrast agent has further extended our ability to characterize the myocardial tissue, it also has limitations in the quantification of enhanced myocardial tissue pathology, and the detection of diffuse myocardial disease, which is not easily recognized by enhancement contrast. Recently, the remarkable advances in CMR technique, such as T1 mapping, which can quantitatively evaluate myocardial status, showed potentials to overcome limitations of existing CMR sequences and to expand the application of CMR. This article will review the technical and clinical points to be considered in the practical use of pre- and post-contrast T1 mapping.

키워드

참고문헌

  1. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 1984;11:425-48. https://doi.org/10.1118/1.595535
  2. Cummings KW, Bhalla S, Javidan-Nejad C, Bierhals AJ, Gutierrez FR, Woodard PK. A pattern-based approach to assessment of delayed enhancement in nonischemic cardiomyopathy at MR imaging. Radiographics 2009;29:89-103. https://doi.org/10.1148/rg.291085052
  3. Callot V, Galanaud D, Figarella-Branger D, et al. Correlations between MR and endothelial hyperplasia in low-grade gliomas. J Magn Reson Imaging 2007;26:52-60. https://doi.org/10.1002/jmri.20995
  4. Friedrich MG. Myocardial edema--a new clinical entity? Nat Rev Cardiol 2010;7:292-6. https://doi.org/10.1038/nrcardio.2010.28
  5. Arai AE. Magnetic resonance imaging for area at risk, myocardial infarction, and myocardial salvage. J Cardiovasc Pharmacol Ther 2011; 16:313-20. https://doi.org/10.1177/1074248411412378
  6. Foltz WD, Yang Y, Graham JJ, Detsky JS, Wright GA, Dick AJ. MRI relaxation fluctuations in acute reperfused hemorrhagic infarction. Magn Reson Med 2006;56:1311-9. https://doi.org/10.1002/mrm.21079
  7. Croisille P, Revel D, Saeed M. Contrast agents and cardiac MR imaging of myocardial ischemia: from bench to bedside. Eur Radiol 2006;16: 1951-63. https://doi.org/10.1007/s00330-006-0244-z
  8. Judd RM, Atalay MK, Rottman GA, Zerhouni EA. Effects of myocardial water exchange on T1 enhancement during bolus administration of MR contrast agents. Magn Reson Med 1995;33:215-23. https://doi.org/10.1002/mrm.1910330211
  9. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011;57:891-903. https://doi.org/10.1016/j.jacc.2010.11.013
  10. Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 2012;33:1268-78. https://doi.org/10.1093/eurheartj/ehr481
  11. Lee JJ, Liu S, Nacif MS, et al. Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson 2011;13:75. https://doi.org/10.1186/1532-429X-13-75
  12. Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intra- individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson 2012; 14:27. https://doi.org/10.1186/1532-429X-14-27
  13. Zhang Y, Yeung HN, O'Donnell M, Carson PL. Determination of sample time for T1 measurement. J Magn Reson Imaging 1998;8:675-81. https://doi.org/10.1002/jmri.1880080324
  14. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for highresolution T1 mapping of the heart. Magn Reson Med 2004;52:141-6. https://doi.org/10.1002/mrm.20110
  15. Scheffler K, Hennig J. T(1) quantification with inversion recovery True- FISP. Magn Reson Med 2001;45:720-3. https://doi.org/10.1002/mrm.1097
  16. Messroghli DR, Plein S, Higgins DM, et al. Human myocardium: singlebreath- hold MR T1 mapping with high spatial resolution--reproducibility study. Radiology 2006;238:1004-12. https://doi.org/10.1148/radiol.2382041903
  17. Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1- mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010;12:69. https://doi.org/10.1186/1532-429X-12-69
  18. Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007;26:1081-6. https://doi.org/10.1002/jmri.21119
  19. Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S. The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol 2009;54:1407-24. https://doi.org/10.1016/j.jacc.2009.04.094
  20. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of nonischaemic cardiomyopathies. Eur Heart J 2005;26:1461-74. https://doi.org/10.1093/eurheartj/ehi258
  21. McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108:54-9. https://doi.org/10.1161/01.CIR.0000078641.19365.4C
  22. Gai N, Turkbey EB, Nazarian S, et al. T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med 2011;65:1407-15. https://doi.org/10.1002/mrm.22716
  23. Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005;111:186-93. https://doi.org/10.1161/01.CIR.0000152819.97857.9D
  24. Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M. Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging 2010;3:727-34. https://doi.org/10.1161/CIRCIMAGING.108.842096
  25. Messroghli DR, Nordmeyer S, Dietrich T, et al. Assessment of diffuse myocardial fibrosis in rats using small-animal Look-Locker inversion recovery T1 mapping. Circ Cardiovasc Imaging 2011;4:636-40. https://doi.org/10.1161/CIRCIMAGING.111.966796
  26. Arheden H, Saeed M, Higgins CB, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology 1999;211:698-708. https://doi.org/10.1148/radiology.211.3.r99jn41698
  27. Willinek WA, Gieseke J, Kukuk GM, et al. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology 2010;256:966-75. https://doi.org/10.1148/radiol.10092127
  28. Judd RM, Levy BI. Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 1991; 68:217-25. https://doi.org/10.1161/01.RES.68.1.217
  29. Wansapura J, Gottliebson W, Crotty E, Fleck R. Cyclic variation of T1 in the myocardium at 3 T. Magn Reson Imaging 2006;24:889-93. https://doi.org/10.1016/j.mri.2006.04.016
  30. Abdel-Aty H, Zagrosek A, Schulz-Menger J, et al. Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 2004; 109:2411-6. https://doi.org/10.1161/01.CIR.0000127428.10985.C6
  31. Payne AR, Casey M, McClure J, et al. Bright-blood T2-weighted MRI has higher diagnostic accuracy than dark-blood short tau inversion recovery MRI for detection of acute myocardial infarction and for assessment of the ischemic area at risk and myocardial salvage. Circ Cardiovasc Imaging 2011;4:210-9. https://doi.org/10.1161/CIRCIMAGING.110.960450
  32. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 2009;53:1475-87. https://doi.org/10.1016/j.jacc.2009.02.007
  33. Abdel-Aty H, Simonetti O, Friedrich MG. T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging 2007;26:452-9. https://doi.org/10.1002/jmri.21028
  34. Williams ES, Kaplan JI, Thatcher F, Zimmerman G, Knoebel SB. Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts. J Nucl Med 1980;21:449-53.
  35. Dall'Armellina E, Piechnik SK, Ferreira VM, et al. Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 2012;14:15. https://doi.org/10.1186/1532-429X-14-15
  36. Ferreira VM, Piechnik SK, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:42. https://doi.org/10.1186/1532-429X-14-42
  37. Bello D, Shah DJ, Farah GM, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 2003;108:1945-53. https://doi.org/10.1161/01.CIR.0000095029.57483.60
  38. Kwong RY, Chan AK, Brown KA, et al. Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on eventfree survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 2006;113:2733-43. https://doi.org/10.1161/CIRCULATIONAHA.105.570648
  39. Kwong RY, Sattar H, Wu H, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 2008;118:1011-20. https://doi.org/10.1161/CIRCULATIONAHA.107.727826
  40. Messroghli DR, Walters K, Plein S, et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 2007;58:34-40. https://doi.org/10.1002/mrm.21272
  41. Kehr E, Sono M, Chugh SS, Jerosch-Herold M. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int J Cardiovasc Imaging 2008; 24:61-8.
  42. Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 2012;126:1206-16. https://doi.org/10.1161/CIRCULATIONAHA.111.089409
  43. Ferreira V, Piechnik SK, Dall'Armellina E, et al. The diagnostic performance of non-contrast T1-mapping in patients with acute myocarditis on cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2012;14(Suppl 1):179. https://doi.org/10.1186/1532-429X-14-S1-P179

피인용 문헌

  1. The echocardiographic paradox index in patients with a repaired tetralogy of Fallot vol.48, pp.2, 2013, https://doi.org/10.3109/14017431.2014.884723
  2. Ex Vivo and in Vivo Administration of Fluorescent CNA35 Specifically Marks Cardiac Fibrosis vol.13, pp.10, 2013, https://doi.org/10.2310/7290.2014.00036
  3. Novel cardiac magnetic resonance biomarkers: native T1 and extracellular volume myocardial mapping vol.18, pp.suppl5, 2016, https://doi.org/10.1093/eurheartj/suw022
  4. Transthyretin amyloidosis: an under-recognized neuropathy and cardiomyopathy vol.131, pp.5, 2017, https://doi.org/10.1042/cs20160413
  5. MRI in patients with cardiac implantable electronic devices: A comprehensive review vol.44, pp.2, 2013, https://doi.org/10.1111/pace.14141
  6. Preliminary study: myocardial T1 relaxation time in patients with ischemic findings and normal findings on coronary angiography vol.67, pp.3, 2021, https://doi.org/10.1590/1806-9282.20200864