Development and Application of Korean Thermality Index (KTI) for Biological Assessment on Climate Change

기후변화의 생물학적 평가를 위한 한국온수생물지수(KTI)의 개발 및 적용

  • Kong, Dongsoo (Department of Life Science, Kyonggi University) ;
  • Kim, Jin-Young (Department of Life Science, Kyonggi University) ;
  • Son, Se-Hwan (Department of Life Science, Kyonggi University) ;
  • Oh, Min Woo (Department of Life Science, Kyonggi University) ;
  • Choi, Ah-Reum (Department of Life Science, Kyonggi University) ;
  • Byeon, Myeong Seop (Hanriver Environment Research Center, National Institute of Environmental Research)
  • Published : 2013.01.30

Abstract

The purpose of this study was to develop a Korean thermality index (KTI) based on the distribution patterns of benthic macroinvertebrates according to altitude and latitude. Analyzing seasonal data (4,853 sampling units) surveyed and collected during 2007 ~ 2011 at 846 sites in South Korea, we estimated thermal valency, thermal value and indicator weight value of 208 species. Among them, 40 species in 6 orders (Decapoda 1 species, Collembola 1 species, Ephemeroptera 5 species, Plecoptera 17 species, Diptera 3 species, Trichoptera 13 species) were selected as the candidate indicator species sensitive and vulnerable to warmth along with climate change. KTI and Benthic macroinvertebrate index (BMI) were tested at three clean streams (Hangye stream, Buk stream and Bangtae stream). KTI showed significant differences according to altitude and water temperature whereas the saprobity index BMI showed little differences. This result means that KTI can be applicable to assess the impact of water temperature independently of organic pollutants.

Keywords

References

  1. Ahn, J. H. and Han, D. H. (2010). Projected Climate Change Impact on Surface Water Temperature in Korea, Journal of Korean Society on Water Environment, 26(1), pp. 133-139. [Korean Literature]
  2. Allan, J. D. and Castillo, M. M. (2007). Stream Ecology: Structure and Function of Running Waters 2nd, Springer, NY.
  3. Conrention on Biological Diversity (CBD). (2010). Biodiversity Scenarios: Projections of 21st Century Change in Biodiversity and Associated Ecosystem Services. A Technical Report for the Global Biodiversity Outlook 3, Leadley, P., Pereira, H. M., Alkemade, R., Fernandez-Manjarres, J. F., Proenca, V., Scharlemann, J. P. W., Walpole, M. J., Secretariat of the Convention on Biological Diversity, World Trade Centre 413 St. Jacques, Suite 800 Montreal, Quebec, Canada H2Y 1N9.
  4. Chadwick, M. A. and Feminella, J. W. (2001). Influence of Salinity and Temperature on the Growth and Production of a Freshwater Mayfly in the Lower Mobile River, Alabama. Limnology and Oceanography, 46, pp. 532-542. https://doi.org/10.4319/lo.2001.46.3.0532
  5. Daufresne, M., Roger, M. C., Capra, H., and Lamouroux, N. (2004). Long-term Changes within the Invertebrate and Fish Communities of the Upper Rhone River: Effects of Climatic Factors, Global Changes Biology, 10, pp. 124-140. https://doi.org/10.1046/j.1529-8817.2003.00720.x
  6. EPA. (2008). Climate Change Effects on Stream and River Biological Indicators: A Preliminary Analysis, Anna Hamilton, Michael Barbor, Jeooen Gerristen, Michael Paul, Global Change Reserch Program National Center for Environmental Assessment Office of Reserch and Development U.S Environmental Protection Agency Washington, DC 20460.
  7. EPA. (2009). A Frame Work for Categorizing the Relative Vulnerability of Threatened and Endangered Species to Climate Change, National Center for Environmental Assessment, Washington, DC: EPA/600/R-09-011.
  8. Foden, W. and Collen, B. (2007). Report to Workshop: "Species Vulnerability traits", Silwood Park, Imperial College, Berkshire, UK, pp. 8-9.
  9. Fossa, A. M., Sykes, M. T., Lawesson, J. E., and Gaard, M. (2004). Potential Effects of Climate Change on Plant Species in the Faroe Islands, Global Ecology and Biogeography, 13(5), pp. 427-437. https://doi.org/10.1111/j.1466-822X.2004.00113.x
  10. Gregory, J. S., Beesley, S. S., and Van Kirk, R. W. (2000). Effect of Springtime Water Temperature on The Time of Emergence and Size of Pteronarcys californica in the Henry's Fork Catchment, Idaho, U.S.A. Freshwater Biology, 45, pp. 75-83. https://doi.org/10.1046/j.1365-2427.2000.00619.x
  11. Harper, M. P. and Peckarsky, B. L. (2006). Emergence Cues of a Mayfly in a High-altitude Stream Ecosystem: Potential Response to Climate Change, Ecological Applications, 16, pp. 612-621. https://doi.org/10.1890/1051-0761(2006)016[0612:ECOAMI]2.0.CO;2
  12. Hauer, F. R., Baron, J. S., Campbell, D. H., Fausch, K. D. Hostetler, S. W., Leavesley, G. H., Leavitt, P. R., Mcknight, D. M., and Stanford, J. A. (1997). Assesment of Climate Change and Freshwater Eosystems of The Rocky Mountains, USA and Canada, Hydrological Processes, 11, pp. 903-924. https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<903::AID-HYP511>3.0.CO;2-7
  13. Hering, D., Astrid, S., Murphy, J., Lücke, S., Carmen, Z., Manuel, J. L., Thomas, H., and Wolfram, G. (2009). Potential Impact of Climate Change on Aquatic Insects: A Sensitivity Analysis for European Caddisflies (Trichoptera) based on Distribution Patterns and Ecological Preferences, Aquatic Sciences, 71, pp. 3-14. https://doi.org/10.1007/s00027-009-9159-5
  14. Hogg, I. D. and Williams, D. D. (1996). Response of Stream Invertebrates to a Global Warming Thermal Regime: an Ecosystem - Level Manipulation, Ecology, 77, pp. 395-407. https://doi.org/10.2307/2265617
  15. Illies J. (1964). The Invertebrate Fauna of the Huallaga, Peruvian Tributary of the Amazon River, from the Sources Down to Tingo Maria. Verhandlungen der Internationale Vereinigung fur Theoretiche und Angewandte Limnologie, 15, pp. 1077-1083.
  16. Intergovernmental Parel on Climate Change (IPCC). (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, [Parry, M., O. Canziani, J. Palutikof, P. van der Linden, C. Hanson (eds.)] Cambridge University Press, Cambridge.
  17. Intergovernmental Parel on Climate Change (IPCC). (2008). Climate Change and Water, IPCC Technical Paper VI, Intergovernmental Parel on Climate Change.
  18. Jacobsen, D., Schultz, R., and Encalada, A. (1997). Structure and Diversity of Stream Invertebrate Assemblages: the Influence of Temperature with Altitude and Latitude, Freshwater Biology, 38, pp. 247-261. https://doi.org/10.1046/j.1365-2427.1997.00210.x
  19. Jenkins, M. (2003). Prospects for Biodiversity, Science, 302, pp. 1175-1177. https://doi.org/10.1126/science.1088666
  20. Kong, D., Son, S. H., Kim, J. Y., Won, D. H., Kim, M. C., Park, J. H., Chon, T. S., Lee, J. E., Park, J. H., Kwak, I. S., Kim, J. S., and Ham, S. A. (2012). Developement and Application of Korean Benthic Macroinvertebrates Index for Biological Assessment on Stream Environment, Proceedings of the 2012 Spring Conference and water environmental forum of Yeongsan river, Korean Society of Limnology, pp. 33-36. [Korean Literature].
  21. Langford, T. E. (1975). The Emergence of Insects from a British River, Warmed by Power Station Cooling-water. II. The Emergence Patterns of Some Species of Ephemeroptera, Trichoptera and Megaloptera in Relation to Water Temperature and River Flow, Upstream and Downstream of the Coolingwater Outflows, Hydrobiologia, 49, pp. 91-133.
  22. Loh, J., Rander J., MacGillivray, A., Kapos, V., Jenkins, M., Groombridge, B., Cox, N., and Warren, B.(ed.). (2000). Living Planet Report 2000. Gland, Switzerland, World Wide Fund International.
  23. Ministry of Environment (MOE). (2007 - 2010). Survey and Evaluation of Aquatic Ecosystem Health, National Institute of Environmental Research. [Korean Literature].
  24. Morrill, J. C., Bales, R. C., and Conklin, M. H. (2005). Estimating Stream Temperature from Air Temperature: Implications for Future Water Quality, Journal of Environmental Engineering, 131, pp. 139-146. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)
  25. Pilgrim, J. M., Fang. X., and Stefan, H. G. (1998). Stream Temperature Correlations with Air Temperatures in Minnesota: Implications for Climate Warming, Journal of the American Water Resources Association, 34, pp. 1109-1121. https://doi.org/10.1111/j.1752-1688.1998.tb04158.x
  26. Poff, N. L., Olden, J. D. and Strayer, D. L. (2012). Saving a Million Species: Extinction Risk from Climate Change, Chapter 17. Climate Change and Freshwater Fauna Extinction Risk, pp. 309-336.
  27. Ricciardi, A. and Rasmussen, J. B. (1999). Extinction Rates of North American Freshwater Fauna, Conservation Biology, 13, pp. 220-222.
  28. Sweeney, B. W. (1978). Bioenergetic and Developmental Response of a Mayfly to Thermal Variation, Limnology and Oceanography, 23, pp. 461-477. https://doi.org/10.4319/lo.1978.23.3.0461
  29. Sweeney, B. W., Vannote, R. L., and Dodds, P. J. (1986). The Relative Importance of Temperature and Diet to Larval Development and Adult Size of Winter Stonefly, Soyedina Carolinensis (Plecoptera: Nemouridae), Freshwater Biology, 16, pp. 39-48. https://doi.org/10.1111/j.1365-2427.1986.tb00946.x
  30. Tyedmers, P. and Ward, B. (2001). A Review of the Impacts os Climate Change on BC's Freshwater Fish Resources and Possible Management Responses, Fisheries Centre Research Reports, 9(7), pp. 1-2.
  31. Turner, D. and Williams, D. D. (2005). Sexual Dimorphism and the Influence of Artificial Elevated Temperatures on Body Size in the Imago of Nemoura trispinosa (Plecoptera: Nemouridae), Aquatic Insects, 27(4), pp. 243-252. https://doi.org/10.1080/01650420500336566
  32. Voshell, Jr. and J. Reese. (2002). A Guide to Freshwater Invertebrates of North America, Mc Donald & Woodward Publishing Co. Blacksburg, VA.
  33. Wang, K., Sun, J., Cheng, G., and Jiang, H. (2011). Effect of Altitude and Latitude on Surface Air Temperature Across the Qinghai-Tibet Plateau, Mountain Science, 8, pp. 808-816. https://doi.org/10.1007/s11629-011-1090-2
  34. Ward, J. V. and Stanford, J. A. (1982). Thermal Responses in the Evolutionary Ecology of Aquatic Insects, Annual Review of Entomology, 27, pp. 97-117. https://doi.org/10.1146/annurev.en.27.010182.000525
  35. Watanabe, N. C., More, I., and Yoshitaka, I. (1999). Effect of Water Temperature on the Mass Emergence of the Mayfly, Ephoron shigae, in a Japanese River (Ephemeroptera: Polymitarcyidae), Freshwater Biology, 41, pp. 537-541. https://doi.org/10.1046/j.1365-2427.1999.00398.x
  36. Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., and Wade, A. J. (2009). A Review of the Potential Impacts of Climate Change on Surface Water Quality, Hydrological Science, 54(1), pp. 101-123. https://doi.org/10.1623/hysj.54.1.101