Preparation and Characterization of Hydrophilized Porous Polycaprolactone-encapsulated Alginate Microsphere for the Treatment of Diabetes Mellitus

당뇨병 치료를 위한 친수화된 다공성 폴리카프로락톤 캡슐 알지네이트 미세입자의 제조 및 분석

  • Kim, Eun Ji (Department of Advanced Materials, Hannam University) ;
  • Choi, Soo Jung (Department of Advanced Materials, Hannam University) ;
  • Kim, Tae Ho (Department of Advanced Materials, Hannam University) ;
  • Oh, Se Heang (Department of Nanobiomedical Science & WCU Research Center, Dankook University) ;
  • Lee, Jin Ho (Department of Advanced Materials, Hannam University)
  • 김은지 (한남대학교 신소재공학과) ;
  • 최수정 (한남대학교 신소재공학과) ;
  • 김태호 (한남대학교 신소재공학과) ;
  • 오세행 (단국대학교 나노바이오의과학과 & WCU 나노바이오 의과학연구센터) ;
  • 이진호 (한남대학교 신소재공학과)
  • Published : 2013.03.01

Abstract

Diabetes mellitus is a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin. Translation of islets has been proposed as a safe and effective therapeutic technique. The islets are commonly encapsulated in alginate/poly(l-lysine) (PLL) hydrogel to suppress the host immune response. However, the low islet isolation efficacy caused by the weak mechanical property of the alginate/PLL hydrogel which can allow hydrogel rupture and thus expose of islet to host immune system is remained a critical limitation for clinical application. To overcome this problem, we developed a hydrophilized porous polycaprolactone (PCL)-encapsulated alginate microsphere by an immersion precipitation of alginate microsphere into PCL/Pluronic F127 solution. Their morphology, mechanical stability in the PBS, protein adsorption behavior, insulin release profile and cytotoxicity were compared with conventional alginate/PLL microsphere.

Keywords

References

  1. S. M. Jo, and J. C. Kim, "Trends in the studies of glucoseresponsive drug delivery systems," J. Korean Ind. Eng. Chem., 20, 581-585 (2009).
  2. A. S. Krolewski, J. H. Warram, and M. B. Freire, "Epidemiology of late diabetic complications. A basis for the development and evaluation of preventive programs," Endocrinol. Metab. Clin. North. Am., 25, 217-242 (1996). https://doi.org/10.1016/S0889-8529(05)70322-4
  3. S. Kizilel, M. Garfinkel, and E. Opara, "The bioartificial pancreas: progress and challenges," Diabetes Technol. Ther., 7, 968-985 (2005). https://doi.org/10.1089/dia.2005.7.968
  4. M. Evans, "Avoiding hypoglycaemia when treating type 1 diabetes," Diabetes, Obes. Metab., 7, 488-492 (2005). https://doi.org/10.1111/j.1463-1326.2004.00416.x
  5. G. Orive, A. R. Gascón, R. M. Hernández, M. Igartua, and J. Luis Pedraz, "Cell microencapsulation technology for biomedical purposes: novel insights and challenges," Trends Pharmacol Sci., 24, 207-210 (2003). https://doi.org/10.1016/S0165-6147(03)00073-7
  6. D. J. Han, "Pancreas and islet transplantation in diabetes," J. Korean Med. Assoc., 51, 724-731 (2008). https://doi.org/10.5124/jkma.2008.51.8.724
  7. H. J. Kim, J. S. Yang, and C. R. Ahn, "Current strategies for successful islet xenotransplantation," J. Korean Soc. Transplant., 23, 214-226 (2009). https://doi.org/10.4285/jkstn.2009.23.3.214
  8. B. J. Hering and C. Ricordi, "Islet transplantation for patients with type I diabetes," Graft, 2, 12-27 (1999).
  9. H. Uludag, P. D. Vos, and P. A. Tresco, "Technology of mammalian cell encapsulation" Adv. Drug. Deliv. Rev., 42, 29-64 (2000). https://doi.org/10.1016/S0169-409X(00)00053-3
  10. E. S. O'Sullivan, A. Vegas, D. G. Anderson, and G.C. Weir, "Islets transplanted in immunoisolatio devices: A review of the progress and the challenges that remain," Endocr. Rev., 32, 827-844 (2011). https://doi.org/10.1210/er.2010-0026
  11. A. G. Mallett, and G. S. Korbutt. "Alginate modification improves long-term survival and function of transplanted encapsulated islets," Tissue Eng. Part A., 15, 1301-1309 (2009). https://doi.org/10.1089/ten.tea.2008.0118
  12. D. Y. Lee, J. H. Nam, and Y. Byun, "Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year," Biomaterials, 28, 1957-1966 (2007). https://doi.org/10.1016/j.biomaterials.2006.12.015
  13. C. Bucke, "Cell immobilization in calcium alginate," Methods Enzymol., 135, 175-179 (1987). https://doi.org/10.1016/0076-6879(87)35076-1
  14. B. L. Strand, T. L. Ryan, P. In't Veld, B. Kulseng, A. M. Rokstad, G. Skjak-Brek, and T. Espevik, "Poly-l-lysine induces fibrosis on alginate microcapsules via the induction of cytokines," Cell Transplant., 10, 263-275 (2001).
  15. F. Lim, and A. M. Sum, "Microencapsulated islets as bioartificial endocrine pancreas," Science, 210, 908-910 (1980). https://doi.org/10.1126/science.6776628
  16. S. Sakai, T. Ono, H. Ijima, and K. Kawakami, "In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancreas," Biomaterials, 23, 4177-4183 (2002). https://doi.org/10.1016/S0142-9612(02)00159-X
  17. P. D. Vos, M. M. Faas, B. Strand, and R. Calafiore, "Alginate-based microcapsules for immunoisolation of pancreatic islets," Biomaterials, 27, 5603-5617 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.010
  18. E. H. Nafea, A. Marson, L. A. Poole-Warren, and P. J. Martens, "Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels" Journal of Controlled Release, 154, 110-122 (2011). https://doi.org/10.1016/j.jconrel.2011.04.022
  19. Y. Shirai, K. Hashimoto, and S. Irie, "Formation of effective channels in alginate gel for immobilization of anchorage-dependent animal cells," Appl. Microbiol. Biotechnol., 4, 342-345 (1989).
  20. H. S. Park, D. S. Ham, Y. H. You, J. Y. Shin, J. W. Kim, J. H. Jo, O. Y. Kim, G. S. Khang, and K. H. Yoon, "Successful Xenogenic Islet ransplantation with Ba2+-Alginate Encapsulation" Tissue Eng. Regen. Med., 7, 523-530 (2010).
  21. X. Cheng, R. Liu and Y. H. He, "A simple method for the preparation of monodisperse protein-loaded microspheres with high encapsulation efficiencies" Eur J Pharm Biopharm., 76, 336-341 (2010). https://doi.org/10.1016/j.ejpb.2010.07.013
  22. K. Wang, Q. Jia, J. Yuan, and S. Li, "A novel, simple method to simulate gelling process of injectable biodegradable in situ forming drug delivery system based on determination of electrical conductivity," Int. J. Pharmaceut.. 404, 176-179 (2011). https://doi.org/10.1016/j.ijpharm.2010.10.042
  23. T. H. Kim, S. H. Oh, S. Y. Na, S. Y. Chun, and J. H. Lee, "Effect of biological/physical stimulation on guided bone regeneration through asymmetrically porous membrane," J. Biomed. Mater. Res. Part A, 100A, 1512-1520 (2012). https://doi.org/10.1002/jbm.a.34086
  24. D. H. Kim, H. Y. Kim, H. S. Koh, H. E. Park, C. Ahn, and J. Y. Kim, "Alginate Microencapsulation of Cells Using Electrostatic Droplet Generator," J. Korean Soc. Transplant., 24, 101-109 (2010). https://doi.org/10.4285/jkstn.2010.24.2.101
  25. T. Maguire, E. Novik, R. Schloss, and M. Yarmush, "Alginate-PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes," Biotechnol Bioeng., 93, 581-591 (2006). https://doi.org/10.1002/bit.20748
  26. C. B. Woitiski, B. Sarmento, R. A. Carvalho, R. J. Neufeld, and F. Veiga, "Facilitated nanoscale delivery of insulin across intestinal membrane models," Int. J. Pharm., 412, 123-131 (2011). https://doi.org/10.1016/j.ijpharm.2011.04.003
  27. L. Broens, F. W. Altena, C. A. Smolders, and D. M. Koenhen, "Asymmetric membrane structures as a result of phase separation phenomena," Desalination 32, 33-45 (1980). https://doi.org/10.1016/S0011-9164(00)86004-X
  28. J. H. Lee and S. H. Oh, "MMA/MPEOMA/VSA copolymer as a novel blood-compatible materials: Effect of PEO and negatively charged side chains on protein adsorption and platelet adhesion," J. Biomed. Mater. Res., 60, 44-52 (2002). https://doi.org/10.1002/jbm.10013
  29. J. H. Lee, H. B. Lee, and J. D. Andrade JD, "Blood compatibility of polyethylene oxide surfaces," Prog. Polym. Sci., 20, 1043-1079 (1995). https://doi.org/10.1016/0079-6700(95)00011-4
  30. L. Sikurova and M. Kristekova, "Fluorescence and anisotropy and light-scattering studies of the interaction of insulin with liposomes," J. Fluoresc., 3, 215-217 (1993). https://doi.org/10.1007/BF00865264