Mating System in Natural Population of Pinus koraiensis at Mt. Seorak Based on Allozyme and cpSSR Markers

동위효소 표지와 cpSSR 표지를 이용한 설악산 잣나무 집단의 교배양식

  • Hong, Yong-Pyo (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Ahn, Ji-Young (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Young-Mi (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Kyung Nak (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Yang, Byeong-Hoon (Forest Environment Conservation Division, Korea Forest Service)
  • 홍용표 (국립산림과학원 산림유전자원과) ;
  • 안지영 (국립산림과학원 산림유전자원과) ;
  • 김영미 (국립산림과학원 산림유전자원과) ;
  • 홍경낙 (국립산림과학원 산림유전자원과) ;
  • 양병훈 (산림청 산림환경보호과)
  • Published : 2013.06.30

Abstract

Mating system parameters were estimated in a natural population of Pinus koraiensis which was located at Gwongeumseong in Mt. Seorak, South Korea. The estimated parameters from allozyme were as follows: 0.882 of multilocus outcrossing rates($t_m$), 0.881 of singlelocus outcrossing rates($t_s$), 0.368 of correlated paternity($r_p$), and 2.7 of number of effective pollen contributors. The estimated parameters from cpSSR markers were as follows: 0.831 of average of outcrossing rates and 12.4 of the average number of effective pollen contributors. The average outcrossing rate from two genetic markers was 0.857, which was similar to those estimated in other conifer species. More number of potential pollen contributors was estimated from cpSSR marker analysis compared with that estimated from allozyme marker analysis. This result sugges$t_s$ that cpSSR markers may be more useful than allozyme markers for identifying potential pollen contributors in the analysis of mating system.

설악산 권금성 일대에 분포하는 잣나무 자연집단을 대상으로 동위효소와 cpSSR 표지를 이용하여 교배양식을 추정하였다. 동위효소를 이용하여 교배양식 모수를 추정한 결과 다수유전자좌 타가교배율($t_m$)은 0.882, 단일유전자좌 타가교배율($t_s$)은 0.881, 부계상관($r_p$)은 0.368로 유효 화분친 수는 평균 2.7개였다. cpSSR 표지를 이용하여 교배양식 모수를 추정한 결과, 타가교배율은 평균 0.831이었으며 유효 화분친 수는 평균 12.4개였다. 두 표지 간 평균 타가 교배율은 0.857로 침엽수종들의 타가교배율과 비슷한 수준이었다. 화분친 수는 동위효소를 이용하여 추정된 결과에 비해 cpSSR 표지로 추정된 결과가 높게 나타나서 DNA 표지의 개체식별력이 동위효소 표지에 비해 교배양식 구명에서 상대적으로 화분친을 정확하게 추정하는데 유리한 것으로 판단되었다.

Keywords

References

  1. 강호상, 임종환, 천정화, 이임균, 김영걸, 이재호. 2007. 광릉 천연활엽수 성숙림에서 주변 인공림으로부터 잣나무 치수의 침입 정착. 한국임학회지 96(1): 107-114.
  2. 김진수, 임주훈, 김종성, 이석우. 1990. 설악산 권금성일대 잣나무 개체군의 영급구조. 한국임학회 하계학술발표논문집. p. 15.
  3. 이강영. 1977. 지리산 잣나무 집단의 변이에 관한 연구. 한국임학회지 34: 1-14.
  4. 이도형, 황재우. 2000. 팔공산 잣나무 천연림의 입지 및 식생구조에 관한 연구. 자원문제연구논문집 19(1): 68-76.
  5. 송연희, 윤충원. 2006. 설악산 국립공원 잣나무 천연림의 군락유형 및 임분구조. 한국환경생태학회지 20(1): 29-40.
  6. 한상돈, 홍용표, 양병훈, 이석우, 김찬수. 2004. 주왕산소나무 집단의 교배양식 모수 추정. 한국임학회 학술연구발표 논문집 1: 315-316.
  7. 홍경낙, 권영진, 정재민, 신창호, 홍용표, 강범룡. 2001. 점봉산 잣나무임분의 개체목 공간분포에 따른 유전구조. 한국임학회지 90: 43-54.
  8. 홍용표, 권혜연, 김용율. 2006. 국내 소나무 집단에 있어서 cpSSR 표지자 변이체 분포양상. 한국임학회지 4:435-442.
  9. 홍용표, 김영미, 안지영, 박재인. 2010. DNA 표지에 의한 채종원내 소나무 교배양식 구명. 한국임학회지 99(3):344-352.
  10. 황재우, 손두식. 1990. 잣나무 천연집단 변이에 관한 연구. 한국연구재단 보고서. pp. 22-32.
  11. Alves, R.M., Artero, A.S., Sebbenn, A.M. and Figueira, A. 2003. Mating system in a natural population of Theobroma grandiflorum (Wild. ex Spreng.) Schum. by microsatellite markers. Genetics and Molecular Biology 26(3): 373-379. https://doi.org/10.1590/S1415-47572003000300025
  12. Burczyk, J., Adams, W.T. and Shimizu, J.Y. 1997. Mating system and genetic diversity in natural populations of Knobcone pine (Pinus attenuata). Forest Genetics 4(4): 223-226.
  13. Chen, X.Y. 2000. Effect of plant density and age on the mating system of Kandelia candel Druce (Rhizophoraceae), a viviparous mangrove species. Hydrobiologia 432: 189-193. https://doi.org/10.1023/A:1004021602271
  14. Cheliak, W.M., Dancik, B.P., Morgan, K., Yeh, F.C.H. and Strobeck, C. 1985. Temporal variation of the mating system in a natural population of Jack Pine. Genetics Society of America 109: 569-584.
  15. Conkle, M.T., Hodgskiss, P.D., Nunanlly, L.B. and Hunter, S.C. 1982. Starch gel electrophoresis of pine seed: a laboratory manual. USDA Forest Service General Technical Report PSW-64. Pacific Southwest Forest and Rancge Experiment Station, Berkely, California, U.S.A. pp. 18.
  16. Duminil, J., Hardy, O.J. and Petit, R.J. 2009. Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evolutionary Biology 9: 177(1-14). https://doi.org/10.1186/1471-2148-9-177
  17. Dyer, R.J. and Sork, V.L. 2001. Pollen pool heterogeneity in Shortleaf pine, Pinus echinata Mill. Molecular Ecology 10: 859-866. https://doi.org/10.1046/j.1365-294X.2001.01251.x
  18. Fady, B. and Wetfall, R.D. 1997. Mating system parameters in natural population of Abies borisii regis Mattfeld. Annual Science Forestry 54: 643-647. https://doi.org/10.1051/forest:19970705
  19. Farris, M.A. and Mitton, J.B. 1984. Population density, outcrossing rate and heterozygote superiority in ponderosa pine. Evolution 38: 1151-1154. https://doi.org/10.2307/2408448
  20. Feng, F., Zhao, D., Sui, X. and Sun, X. 2011. Study on mating system of Pinus koraiensis in natural population based on cpSSR technology. Advanced Materials Research 183-185: 700-704. https://doi.org/10.4028/www.scientific.net/AMR.183-185.700
  21. Ferriol, M., Pichot, C. and Lefevre, F. 2011. Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population. Heredity 106: 146-157. https://doi.org/10.1038/hdy.2010.45
  22. Gaspar, M.J., de-Lucas, A.J., Alia, R., Paiva, J.A.P., Huidalgo, E., Louzada, J., Almeida, H. and Martinez, S.C.G. 2009. Use of molecular markers for estimating breeding parameters: a case study in a Pinus pinaster Ait. progeny trial. Tree Genetics and Genomes 5(4): 609-616. https://doi.org/10.1007/s11295-009-0213-1
  23. Geng, Q., Lian, C., Goto, S., Tao, J., Kimura, M., Islam, M.S. and Hogetsu, T. 2008. Mating system, pollen and propagule dispersal and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Molecular Ecology 17: 4724-4739. https://doi.org/10.1111/j.1365-294X.2008.03948.x
  24. Jones, M.E., Shepherd, M., Henry, R. and Delves, A. 2008. Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers. Tree Genetics and Genomes 4: 37-47.
  25. Kim, Z.S., Hwang, J.W., Lee, S.W., Yang, C. and Gorovoy, P.G. 2005. Genetic variation of Korean Pine (Pinus koraiensis Sieb. et Zucc.) at Allozyme and RAPD markers in Korea, China and Russia. Silvae Genetica 54: 235-246.
  26. Krutovskii, K.V., Politov, D.V. and Alkhutov, Y.P. 1995. Isozyme study of population genetic structure, mating system and phylogenetic relationshps of the five stone pine species (subsection Cembrae section Strobi, subgenus Strobus). pp. 270-304. In: P. Baradat, W.T. Adams and G. Muller-Starck, ed. Population Genetics and Conservation of Forest Trees. SPB Academic Publishing, Netherlands.
  27. Lee, S.W., Jang, S.S., Jang, K.H. and Kim, C.S. 2003. Estimation of mating system parameters in the natural population on Pinus densiflora of Anmyon island, Korea using allozyme markers. Journal of Korea Forestry Society 92(2): 121-128.
  28. Lee, S.W., Hong, Y.P., Kwon, H.Y. and Kim, Z.S. 2006. Population Genetic Studies on Indigenous Conifers in Korea. Forest Science and Technology 2(2): 137-148. https://doi.org/10.1080/21580103.2006.9656309
  29. Lewandowski, A. and Burczyk, J. 2000. Mating system and genetic diversity in natural populations of European Larch (Larix decidua) and Stone Pine (Pinus cembra) located at higher elevations. Silvae Genetica 49(3): 158-161.
  30. De-Lucas, A.I., Robledo-Arnuncio, J.J., Hidalgo, E. and Gonzalez-Martinez, S.C. 2008. Mating system and pollen gene flow in Mediterranean maritime pine. Heredity 100: 390-399. https://doi.org/10.1038/sj.hdy.6801090
  31. Marshall, T.C., Slate, J., Kruuk, L. and Pemberton, T.M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7: 639-655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
  32. Martins, K., Chaves, L.J., Buso, G.S.C. and Kageyama, P.Y. 2006. Mating system and fine-scale spatial genetic structure of Solanum lycocarpum St. Hil.(Solanaceae) in the Brazilian Cerrado. Conservation Genetics 7: 957-969. https://doi.org/10.1007/s10592-006-9140-y
  33. Mitton, J.B. 1992. The dynamic mating system of conifers. New Forests 6: 197-216. https://doi.org/10.1007/BF00120645
  34. Williams, C.G. . 2006. Landscapes, Genomics and Transgenic Conifers. Springer. Netherlands. pp. 147-168.
  35. Morgante, M., Vendramin, G.G. and Olivieri, A.M. 1991. Mating system analysis in Pinus leucodermis Ant.; detection of self-fertilization in natural populations. Heredity 67: 197-203. https://doi.org/10.1038/hdy.1991.80
  36. O'Connell, L.M., Mosseler, A. and Rajora, O.P. 2006. Impacts of forest fragmentation on the mating system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity 97: 418-426. https://doi.org/10.1038/sj.hdy.6800886
  37. Potenko, V.V. and Velikov, A.V. 2001. Allozyme variation and mating system of coastal populations of Pinus koraiensis Sieb. et Zucc in Russia. Sivae Genetica 50: 117-122.
  38. Powell, W., Morgante, M., Mcdevitt, R., Vendramin, G.G. and Rafalski, A. 1995. Polymorphic simple sequence repeat regions in chloroplast genomes: Applications to the population genetics of pines. Proceeding of National Academy of Sciences U.S.A. 92: 7759-7763. https://doi.org/10.1073/pnas.92.17.7759
  39. Provan, J., Soranzo, N., Wilson, N.J., Goldstein, D.B. and Pwell, W. 1999. A low mutation rate for chloroplast microsatellites. Genetics 153: 943-947.
  40. Restoux, G., Silva, D.E., Sagnard, F., Torre, F., Klein, E. and Bruno, F. 2008. Life at the margin: the mating system of Mediterranean conifers. Web Ecology 8: 94-102. https://doi.org/10.5194/we-8-94-2008
  41. Ritland, K. 1989. Correlated mating in the partial selfer, Mimulus guttatus. Evolution 43: 848-859. https://doi.org/10.2307/2409312
  42. Ritland, K. 2002. Extensions of models for the estimation of mating systems using n idependent loci. Heredity 88: 221-228. https://doi.org/10.1038/sj.hdy.6800029
  43. Robledo-Arnuncio, J.J., Alia, R. and Gil, L. 2004. Increased selfing and correlated paternity in a small population of predorminantly outcossing conifer, Pinus syulvestris. Molecular Ecology 13: 2367-2577.
  44. Smouse, P.E. and Robledo-Arnuncio, J.J. 2005. Measuring the genetic structure of the pollen pool as the probability of paternal identity. Heredity 94: 640-649. https://doi.org/10.1038/sj.hdy.6800674
  45. Smouse, P.E. and Sork, V.L. 2004. Measuring pollen flow in forest trees: A comparison of alternative approaches. Forest Ecology and Management 197: 21-38 https://doi.org/10.1016/j.foreco.2004.05.049
  46. Vendramin, G.G., Lelli, L., Rossi, P. and Morgante, M. 1996. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Molecular Ecology 5: 111-114.