DOI QR코드

DOI QR Code

Community Structure, Species Diversity of Insects (ants, ground beetles), and Forest Health in the Hongneung Forest

홍릉 숲의 곤충(개미와 지표성 딱정벌레)의 군집구조, 종다양성, 산림건강성

  • Lee, Cheol Min (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Kwon, Tae-Sung (Division of Forest Ecology, Korea Forest Research Institute)
  • 이철민 (국립산림과학원 산림생태연구과) ;
  • 권태성 (국립산림과학원 산림생태연구과)
  • Published : 2013.03.31

Abstract

The present study is aimed to evaluate forest health in a fragmented urban forest using characteristics of insect communities. Ants (Formicidae) and ground beetles (Carabidae) surveyed by pitfall trap method in the Hongneung forest located in the urban area of Seoul were compared with those in the Gwangneung forest. The Gwangneung forest is supposed to be health due to its high biodiversity and well-conserved nature. Ants of the Hongneung forest was much more abundant compared with those of the Gwangneung forest. However, ground beetles showed the opposite patterns; much more abundant in the Gwangneung forest than in the Hongneung forest. Species richness was higher in the Gwangneung forest than in the Hongneung forest, but species diversity was higher in the Hongneung forest. In the Hongneung forest, forest specialist species and generalist species were balanced, whereas few forest specialists dominated in the Gwangneung forest. This dominance decreased species diversity in those Gwangneung forest. Thus, characteristics of insect community in the Hongneung forest were greatly different with those in the Gwangneung forest.

본 연구에서는 곤충군집의 특성을 이용하여 도시숲의 산림건강성 평가를 시도하였다. 이를 위해 서울도심에 위치한 홍릉 숲에서 함정트랩법으로 개미(Formicidae)와 지표성 딱정벌레(Carabidae)를 조사하여 광릉 숲의 그것과 비교하였다. 여기서 광릉 숲은 잘 보존되고 생물다양성과 자연성이 높기 때문에 산림건강성이 높을 것으로 추정하였다. 광릉 숲에 비해 홍릉 숲은 개미는 매우 많았으나, 딱정벌레는 매우 적었다. 종다양성의 경우에는 종풍부도는 광릉 숲이 높았으나, 종다양도는 홍릉 숲이 높았다. 광릉 숲에서는 소수의 숲 특이종에 의한 우점 현상이 심한데 비해, 홍릉 숲에서는 숲 특이종과 일반종이 균형을 이룸으로서 다양도가 광릉 숲에 비해 높았다. 이와 같이 홍릉 숲은 광릉 숲과는 곤충군집의 특성이 많이 달랐다.

Keywords

References

  1. 권태성, 김성수, 이철민, 박주한, 천정화, 성주한, 김석권. 2011. A1B 기후변화 시나리오에 따른 개미의 분포와 풍부도의 변화 예측. 국립산림과학원. 연구자료 417호. pp. 70.
  2. 권태성, 김성수, 이철민, 정승재, 성주한. 2012. 한국개미분포도감 2006-2011. 국립산림과학원. 연구자료 459호. pp. 162.
  3. 김동실. 2008. 서울의 지형적 배경과 도시화 양성. 한국교원대학교 박사학위논문. pp. 180.
  4. 박종균, 백종철. 2001. 딱정벌레과 딱정벌레目(Coleoptera). 농업과학기술원. 한국경제곤충 12. pp. 169.
  5. 박종균. 2004. 한국의 딱정벌레아과 딱정벌레目(Coleoptera). 농업과학기술원. 한국경제곤충 23. pp. 96.
  6. 이경재, 조재창, 이봉수, 이도석. 1990. 광릉 산림의 식물군집구조(I). 한국임학회지 79(2): 173-186.
  7. 이철민, 권태성, 박영규, 김병우. 2012. 산불지에서 절지동물 포식자(거미목, 딱정벌레과, 반날개과와 개미과)의 군집구조, 종풍부도 및 풍부도에 대한 교란강도의 영향. 한국임학회지 101: 488-500.
  8. 이철민, 권태성. 2012. 격리된 도시숲, 홍릉 숲 나비군집의 특성. 한국응용곤충학회지 317-323.
  9. 임업연구원. 2003. 광릉시험림 90년사 1913-2003. 세진기획, 서울. pp. 811.
  10. 전재홍, 김경하, 유재윤, 정용호, 정창기. 2005. 광릉 전나무인공림에서 수액이동량, 토양수분장력 그리고 토양 함수량의 변화와 상호작용. 한국임학회지 94(6): 496-503.
  11. 조재형, 박찬열, 김석권. 2011. 홍릉숲이야기. 국림산림과학원. 산림과학속보 11-02.
  12. 최병문, 이흥식. 1999. 한국산 개미의 분포에 관한 연구(21): 관악산의 개미상. 한국토양동물학회지4: 1-4.
  13. 최재천, 최용상. 2011. 기후변화 교과서. 도요새, 서울. pp. 631.
  14. 今井長兵衛, 夏原由博. 1996. 大阪市とその周邊の綠地のチョウ相の比較と島の生物地理の適用. 日本環境動物昆蟲學會誌 8(1): 23-34.
  15. 今井弘民. 2003. 日本産アリ類全種圖鑑. 學硏. pp. 196.
  16. 李哲敏, 石井實. 2009. 南大阪の都市綠地における地表性甲蟲類の種多樣性. 日本環境動物昆蟲學會誌 20(2): 47-58.
  17. 茂木哲一, 柳井重人. 2005. 東京都区部の屋上化地における鳥類の分布特性にする硏究. ランドスケ一プ硏究 68: 597-600.
  18. 寺村守, 久保田敏. 2009. アリハンドブック. 文一總合出版.pp. 80.
  19. 上野俊一, 黑澤良彦, 佐藤正孝. 1985. 原色日本甲圖鑑(II). 保育社. pp. 514.
  20. 石井實, 山田惠, 廣渡俊哉, 保田淑郞. 1991. 大阪府內の都市公園におけるチョウ類群集の多樣性. 日本環境動物昆蟲學會誌 3(4): 183-195.
  21. 由井亜右子, 夏原由博, 村上健太郞, 森本幸裕. 2001. 都市孤立林におけるアリの種數に影響する要因. 日工誌 27(1): 78-83.
  22. 夏原由博. 2000. 都市近郊の環境傾向に沿ったチョウ群集の變化. ランドスケ一プ硏究 63(5): 515-518.
  23. Agosti, D., Majer, J.D., Alonso, L.E. and Schultz, T.R. 2000. Ants: Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution, Washington. pp. 280.
  24. Andrew, N., Rodgerson, L. and York, A. 2000. Frequent fuel-reduction burning: the role of logs and associated leaf litter in the conservation of ant biodiversity. Austral Ecology 25: 99-107. https://doi.org/10.1046/j.1442-9993.2000.01015.x
  25. Brown, M., Black, T.A., Nesic, Z., Foord, V.N., Spittlehouse, D.L., Fredeen, A.L., Grant, N.J., Burton, P.J. and Trofymow, J.A. 2010. Impact of mountain pine beetle on the net ecosystem production of lodgepole pine stands in British Columbia. Agricultural and Forest Meteorology 150: 254-264. https://doi.org/10.1016/j.agrformet.2009.11.008
  26. Cairns J., McCormick, V.P. and Niederlehner, B.R. 1993. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 263: 1-44. https://doi.org/10.1007/BF00006084
  27. Chao, A. 1984. Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics 11: 265-270.
  28. Colwell, R.K. 2005. Estimate S: statistical estimation of species richness and shared species from sample. Version 7.5 User's Guide and application published at : http://puri.ocic.org/estimates.
  29. Colwell, R.K., Mao, C.X., Chang, J. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85: 2717-2727. https://doi.org/10.1890/03-0557
  30. Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302-1310. https://doi.org/10.1126/science.199.4335.1302
  31. Den Boer, P.J. 1977. Dispersal power and survival: carabids in a cultivated countryside. Miscellaneous papers LH Wageningen 14: 1-19.
  32. Ferretti, M. 1997. Forest health assessment and monitoring- issues for consideration. Environmental Monitoring and Assessment 48: 45-72. https://doi.org/10.1023/A:1005748702893
  33. Fujita, A., Maeto, K., Kagawa, Y. and Ito, N. 2008. Effects of forest fragmentation on species richness and composition of ground beetles (Coloeptera: Carabidae and Brachinidae) in urban landscapes. Entomological Science 11: 39-49. https://doi.org/10.1111/j.1479-8298.2007.00243.x
  34. George, S.L. and Crooks, K.R. 2006. Recreation and large mammal activity in an urban nature reserve. Biological Conservation 133: 107-117. https://doi.org/10.1016/j.biocon.2006.05.024
  35. Gombert, S., Asta, J. and Seaward, M.R.D. 2004. Assessment of lichen diversity by index of atmospheric purity (IAP), index of human imoact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Science of the Total Environment 324: 183-199. https://doi.org/10.1016/j.scitotenv.2003.10.036
  36. Hamer, A.J. and McDonnell, M.J. 2008. Amphibian ecology and conservation in the urbanising world: A review. Biological Conservation 141: 2432-2449. https://doi.org/10.1016/j.biocon.2008.07.020
  37. Hayek, L.C. and Buzas, M.A. 1996. Surveying natural populations. Columbia University Press, NY.
  38. Holland, M.J. 2002. The Agroecology of Carabid Beetles. Intercept Ltd, UK. pp. 356.
  39. Hölldobler, B. and Wilson, E.O. 1990. The Ants. Harvard University Press, Massachusetts.
  40. IPCC. 2007. Climate change 2007: the physical science basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (Eds.), Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, pp. 996.
  41. Ishitani, M., Kotze, D.J. and Niemelä, J. 2003. Changes in carabid beetle assemblages across an urban-rural gradient in Japan. Ecography 26: 481-489. https://doi.org/10.1034/j.1600-0587.2003.03436.x
  42. JAID (Japanese Ant Image Database). 2010. http:// ant.edb.miyakyo-u.ac.jp/
  43. Keller, I. and Largiadér. 2003. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proceeding of the Royal Society of London 270: 417- 423. https://doi.org/10.1098/rspb.2002.2247
  44. Kim, E.S., Kang, S.K., Lee, B.R., Kim, K.H. and Kim, J. 2007. Parameterization and Application of Regional Hydro- Ecologic Simulation System (RHESSys) for Integrating the Eco-hydrological Processes in the Gwangneung Headwater Catchment. Korean Journal of Agricultural and Forest Meteorology 9(2): 121-131. https://doi.org/10.5532/KJAFM.2007.9.2.121
  45. Kolb, T.E., Wagner, M.R. and Covington. W.W. 1994. Utilitarian and ecosystem perspectives: Concepts of Forest health. Journal of Forestry 92(7): 10-15.
  46. Kwon, T.-S. 1996. Diversity and Abundance of Ground beetle (Coleoptera; Carabidae) in the Kwangnung Experimental Forest. Korean Journal of Entomology 28(4): 351-361.
  47. Magura, T., Tothmeresz, B. and Molnar, T. 2004. Changes in carabid assemblages along an urbanization gradient in the city of Debrecen, Hungary. Landscape Ecology 19: 747-759. https://doi.org/10.1007/s10980-005-1128-4
  48. Magurran, A.E. 1988. Ecological diversity and its measurement. Cambridge University Press, London.
  49. Maleque, M.A., Maeto, K. and Ishii, H.T. 2009. Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. Applied Entomology and Zoology 44(1): 1-11. https://doi.org/10.1303/aez.2009.1
  50. McCune, B. 2000. Lichen Communities as Indicators of Forest Health. The Bryologist 103: 353-356. https://doi.org/10.1639/0007-2745(2000)103[0353:LCAIOF]2.0.CO;2
  51. Niemela, J., Kotze, J.D., Venn, S., Penev, L., Stoyanov, I., Spence, J., Hartley, D. and de Oca, E.M. 2002. Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: an international comparison. Landscape Ecology 17(5): 387-401. https://doi.org/10.1023/A:1021270121630
  52. Rainio, J. and Niemela, J. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation 12: 487-506. https://doi.org/10.1023/A:1022412617568
  53. Ruben, O.A. and Ian, M.F. 2009. Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning 90: 189-195. https://doi.org/10.1016/j.landurbplan.2008.11.003
  54. Sampson, R.N., Adams, D.L., Hamilton, S., Mealey, S.F., Steele, R. and van de Graffe, D. 1994. Lookout: assessing forest health in the inland west. American Forests 100(3/4): 13-16.
  55. Sorensen, T.A. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation on Danish commons. Biologiske Skrifter 5: 1-34.
  56. Styers, D.M., Chappelka, A.H., Marzen, L.J. and Somers, G.L. 2010. Developing a land-cover classification to select indicators of forest ecosystem health in a rapidly urbanizing landscape. Landscape and Urban Planning 94: 158-165. https://doi.org/10.1016/j.landurbplan.2009.09.006
  57. Triplehorn, C.A. and Johnson, N.F. 2005. Borror and delong's introduction to the study of insects. Thomson Brooks/Cole. Belmont, pp. 864.
  58. Wear, D.N. and Greis, J.G. 2002. Southern forest resource assessment. U.S. Department of Agriculture, Forest Service, Southern Research Station. Technical Report, SRS-53.
  59. Yamaguchi, T. 2005. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan II. Analysis of species. Entomological Science 8: 17-25. https://doi.org/10.1111/j.1479-8298.2005.00096.x
  60. Zar, J.H. 1999. Biostatistical study analysis (4th edition) Prentice Hall international, INC. USA.

Cited by

  1. Effects of landscape and management on ground-dwelling insect assemblages of farmland in Jeju Island, Korea vol.46, pp.1, 2016, https://doi.org/10.1111/1748-5967.12146
  2. Diversity and density of butterfly communities in urban green areas: an analytical approach using GIS vol.54, pp.1, 2015, https://doi.org/10.1186/s40555-014-0090-7
  3. Assessment of the change of forest health of Backdu-daegan area in South Korea vol.10, pp.4, 2014, https://doi.org/10.1080/21580103.2014.929051
  4. Empirical test of the influence of global warming and forest disturbance on ant fauna at the Gwangneung Forest Long Term Ecological Research site, South Korea vol.7, pp.3, 2014, https://doi.org/10.1016/j.japb.2014.06.004
  5. The Lonchaeidae (Diptera) of South Korea with descriptions of four new species vol.19, pp.1, 2016, https://doi.org/10.1016/j.aspen.2015.12.004
  6. Diversity of beetles in Gariwangsan Mountain, South Korea: Influence of forest management and sampling efficiency of collecting method vol.7, pp.3, 2014, https://doi.org/10.1016/j.japb.2014.06.005
  7. Response of ground arthropods to effect of urbanization in southern Osaka, Japan vol.8, pp.4, 2015, https://doi.org/10.1016/j.japb.2015.10.007
  8. Effects of Forest Roads on Hemipteran Diversity in Mt. Gariwang, Korea Test of Intermediate Disturbance Hypothesis vol.6, pp.2, 2013, https://doi.org/10.7229/jkn.2013.6.2.239
  9. Influences of Forest Type and Fragmentation by a Road on Beetle Communities in the Gwangneung Forest, South Korea vol.54, pp.1, 2013, https://doi.org/10.11614/ksl.2021.54.1.061
  10. Response of Ground Beetle (Coleoptera: Carabidae) Communities to Effect of Urbanization in Southern Osaka: An Analytical Approach Using GIS vol.13, pp.13, 2021, https://doi.org/10.3390/su13137134