DOI QR코드

DOI QR Code

Estimation of Long-term Effects of Harvest Interval and Intensity, and Post-harvest Residue Management on the Soil Carbon Stock of Pinus densiflora Stands using KFSC Model

한국형 산림토양탄소모델(KFSC)을 이용한 수확 주기 및 강도와 수확 후 잔재물 처리방법에 따른 소나무림 토양탄소 저장량의 장기 변화 추정 연구

  • Park, Chan-Woo (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Yi, Koong (Department of Forest Soil and Water Conservation, Korea Forest Research Institute) ;
  • Lee, Jongyeol (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Lee, Kyeong-Hak (Department of Forest and Climate Change, Korea Forest Research Institute) ;
  • Yi, Myong-Jong (Department of Forest Resources, Kangwon National University) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Park, Gwan-Soo (Department of Environment and Forest Resources, Chungnam National University) ;
  • Kim, Raehyun (Department of Forest and Climate Change, Korea Forest Research Institute) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 박찬우 (고려대학교 대학원 환경생태공학과) ;
  • 이궁 (국립산림과학원 산림수토보전과) ;
  • 이종열 (고려대학교 대학원 환경생태공학과) ;
  • 이경학 (국립산림과학원 기후변화연구센터) ;
  • 이명종 (강원대학교 산림자원학과) ;
  • 김춘식 (경남과학기술대학교 산림자원학과) ;
  • 박관수 (충남대학교 산림환경자원학과) ;
  • 김래현 (국립산림과학원 기후변화연구센터) ;
  • 손요환 (고려대학교 대학원 환경생태공학과)
  • Published : 2013.03.31

Abstract

Harvest is one of the major disturbances affecting the soil carbon (C) dynamics in forests. However, researches on the long-term impact of periodic harvest on the soil C dynamics are limited since they requires rigorous control of various factors. Therefore, we adopted a modeling approach to determine the long-term impacts of harvest interval, harvest intensity and post-harvest residue management on soil C dynamics by using the Korean Forest Soil Carbon model (KFSC model). The simulation was conducted on Pinus densiflora S. et Z. stands in central Korea, and twelve harvest scenarios were tested by altering harvest intervals (50, 80, and 100-year interval), intensities (partial-cut harvest: 30% and clear-cut harvest: 100% of stand volume), and the residue managements after harvest (collection: 0% and retention: 100% of aboveground residue). We simulated the soil carbon stock for 400 years for each scenario. As a result, the soil C stocks in depth of 30 cm after 400 years range from 50.3 to 55.8 Mg C $ha^{-1}$, corresponding to 98.1 to 108.9% of the C stock at present. The soil C stock under the scenarios with residue retention was 2.5-11.0% higher than that under scenarios with residue collection. However, there was no significant impact of harvest interval and intensity on the soil C stock. The soil C dynamics depended on the dead organic matter dynamics derived from the amount of dead organic matter and growth pattern after harvest.

벌채 수확은 토양 내 탄소 동태를 변화시킬 수 있는 중요한 교란 중 하나이다. 그러나 수확에 따른 토양탄소 변화를 현지에서 장기간 연구하는 데에는 여러 가지 제한 요건이 있기 때문에 수학적 모델을 이용하여 장기적인 토양탄소 변화 경향을 효율적으로 추정할 수 있다. 본 연구에서는 최근 개발된 한국형 산림토양탄소 모델(KFSC 모델)을 이용하여 국내 중부지방 소나무(Pinus densiflora S. et Z.) 임분을 대상으로 수확의 주기, 강도, 수확 후 잔재물 처리방법에 따른 산림토양탄소 동태의 장기 변화를 모의하였다. 모의 시나리오는 3개의 수확 주기(50년, 80년, 100년), 2개의 수확 강도(재적 대비 30%의 부분수확 및 100%의 개벌수확), 2개의 수확 후 잔재물 처리방법(지상부 잔재물의 전량 수거 및 전량 방치) 등을 조합하여 총 12개로 이루어졌으며, 연간 토양탄소 저장량의 변화를 400년 간 모의하였다. 모의 결과, 400년 후 30 cm 깊이까지의 토양탄소 저장량은 시나리오별로 50.3-55.8 Mg C $ha^{-1}$(현재 토양탄소 저장량 대비: 98.1-108.9%)의 범위를 나타냈다. 수확 후 잔재물을 전량 방치할 경우 잔재물을 전량 수거할 때보다 토양탄소 저장량이 2.5-11.0% 증가하는 것으로 모의되었으나, 수확 주기 및 강도에 따른 토양탄소 저장량 변화에서는 일정한 경향이 나타나지 않았다. 토양탄소 저장량의 변화 경향은 고사유기물의 변화 경향과 일치하였으며, 고사유기물의 변화 경향은 수확 시 발생하는 고사유기물의 양과 수확 후 임분 생장 형태에 의해 달라지는 것으로 나타났다.

Keywords

References

  1. 강성기, 김완수, 이원섭, 김지홍. 2001. 침엽수 조림지에서의 잔존임분밀도에 따른 임목생장 비교에 관한 연구. 임산에너지 20(2): 46-57.
  2. 김문일, 이우균, 박태진, 곽한빈, 변정연, 남기준, 이경학, 손영모, 원형규, 이상민. 2012. 간벌강도 및 주기에 따른 동적 흉고직경 생장예측 모형개발 -기존 수확표 자료를 기반으로-. 한국임학회지 101(2): 266-278.
  3. 산림청. 2009. 재적중량표 및 임분수확표. 산림청. 대전. pp. 272.
  4. 산림청. 2010. 교토의정서 대응 산림탄소계정 기반 구축 연구. 산림청. 대전. pp. 436.
  5. 산림청. 2011. 임업통계연보 (제41호). 산림청. 대전. pp.
  6. 이동환. 2012. 임목수확 집재작업시스템과 작업장 개발. 월간산림 2012(6): 72-75.
  7. 이아름, 이궁, 손요환, 김래현, 김춘식, 박관수, 이경학, 이명종. 2010. 해외 산림토양탄소모델 분석을 통한 한국형 모델 개발방안 연구. 한국임학회지 99(6): 791-801.
  8. Blumfield, T.J., Xu, Z., Prasolova, N.V. and Mathers, N.J. 2006. Effect of overlying windrowed harvest residues on soil carbon and nitrogen in Hoop pine plantations of subtropical Australia. Journal of Soils and Sediments 6(4): 243-248. https://doi.org/10.1065/jss2006.08.180
  9. Dixon, R.K., Brown, S., Houghton, R.A., Solomin, A.M., Trexler, M.C. and Wisniewski, J. 1994. Carbon pools and flux of global forest ecosystems. Science 263(5144): 185-190. https://doi.org/10.1126/science.263.5144.185
  10. Edwards, N.T. and Ross-Todd, B.M. 1983. Soil carbon dynamics in a mixed deciduous forest following clear-cutting with and without residue removal. Soil Science Society of America Journal 47(5): 1014-1021. https://doi.org/10.2136/sssaj1983.03615995004700050035x
  11. Falloon, P. and Smith, P. 2009. Modelling soil carbon dynamics. pp. 221-244. In : W. L. Kutsch, M. Bahn and A. Heinemeyer, ed. Soil carbon dynamics: An integrated methodology. Cambridge University Press. Cambridge, UK.
  12. Foereid, B., Bellamy, P.H., Holden, A. and Kirk, G.J.D. 2012. On the initialization of soil carbon models and its effects on model predictions for England and Wales. European Journal of Soil Science 63(1): 32-41. https://doi.org/10.1111/j.1365-2389.2011.01407.x
  13. Ghidey, F., Gregory, J.M., McCarty, T.R. and Alberts, E.E. 1985. Residue decay evaluation and prediction. American Society of Agricultural Engineers 28(1): 102-105. https://doi.org/10.13031/2013.32211
  14. Goodale, C.L., Apps, M.J., Birdsey, R.A., Field, C.B., Heath, L.S., Houghton, R.A., Jenkins, J.C., Kohlmaier, G.H., Kurz, W., Liu, S., Nabuurs, G.J., Nilsson, S. and Shvidenko, A.Z. 2002. Forest carbon sinks in th northern hemisphere. Ecological Applications 12(3): 891-899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2
  15. Gregg, J.S. and Izaurralde, R.C. 2010. Effect of crop residue on long-term crop yield, soil erosion and nutrient balace: trade-offs for a sustainable bioenergy feedstock. Biofuels 1(1): 69-83. https://doi.org/10.4155/bfs.09.8
  16. Harmon, M.E., Moreno, A. and Domingo, J.B. 2009. Effects of partial harvest on the carbon stores in douglasfir/ western hemlock forests: A simulation study. Ecosystems 12(5): 777-791. https://doi.org/10.1007/s10021-009-9256-2
  17. Heimann, M. and Reichstein, M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176): 289-292. https://doi.org/10.1038/nature06591
  18. Hoover, C.M. 2011. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US. Carbon Balance and Management 6: 17. https://doi.org/10.1186/1750-0680-6-17
  19. Johnson, D.W., Knoepp, J.D., Swank, W.T., Shan, J., Morris, L.A., Van Lear, D.H. and Kapeluck, P.R. 2002. Effects of forest management on soil carbon: results of some long-term resampling studies. Environmental Pollution 116: S201-S208. https://doi.org/10.1016/S0269-7491(01)00252-4
  20. Jones, H.S., Garrett, L.G., Beets, P.N., Kimberley, M.O. and Oliver, G.R. 2008. Impacts of harvest residue management on soil carbon stocks in a plantation forest. Soil Science Society of American Journal 72(6): 1621-1627. https://doi.org/10.2136/sssaj2007.0333
  21. Kaipainen, T., Liski, J., Pussinen, A. and Karjalainen, T. 2004. Managing carbon sinks by changing rotation length in European forests. Environmental Science and Policy 7(3): 205-219. https://doi.org/10.1016/j.envsci.2004.03.001
  22. Knoepp, J.D. and Swank, W.T. 1997. Forest management effects on surface soil carbon and nitrogen. Soil Science Society of America Journal 61(3): 928-935. https://doi.org/10.2136/sssaj1997.03615995006100030031x
  23. Lee, A.R., Noh, N.J., Cho, Y., Lee, W.K. and Son, Y. 2009. Estimating the soil carbon stocks for Pinus densiflora forest using the soil carbon model, Yasso. Journal of Ecology and Field Biology 32(1): 47-53. https://doi.org/10.5141/JEFB.2009.32.1.047
  24. Liski, J., Palosuo, T., Peltoniemi, M. and Sievänen, R. 2005. Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189: 168-182. https://doi.org/10.1016/j.ecolmodel.2005.03.005
  25. Liski, J., Pussinen, A., Pingoud, K., Mäkipää, R. and Karjalainen, T. 2001. Which rotation length is favourable to carbon sequestration. Canadian Journal of Forest Research 31(11): 2004-2013. https://doi.org/10.1139/x01-140
  26. Liu, S., Bond-Lamberty, B., Hicke, J.A., Vargas, R., Zhao, S., Chen, J., Edburg, S.L., Hu, Y., Liu, J., McGuire, A.D., Xiao, J., Keane, R., Yuan, W., Tang, J., Luo. Y., Potter, C. and Oeding, J. 2011. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges. Journal of Geophysical Research 116: G00K08.
  27. Nakane, K. 1994. Modelling the soil carbon cycle of pine ecosystems. Ecological Bulletins 43: 161-172.
  28. Noormets, A., McNulty, S.G., Domec, J.C., Gavazzi, M., Sun, G. and King, J.S. 2012. The role of harvest residue in rotation cycle carbon balance in loblolly pine plantations. Respiration partitioning approach. Global Change Biology 18(10): 3186-3201. https://doi.org/10.1111/j.1365-2486.2012.02776.x
  29. Peckham, S.D. and Gower, S.T. 2011. Simulated longterm effects of harvest and biomass residue removal on soil carbon and nitrogen content and productivity for two Upper Great Lakes forest ecosystems. Global Change Biology Bioenergy 3(2): 135-147. https://doi.org/10.1111/j.1757-1707.2010.01067.x
  30. Roberts, S.D., Harrington, C.A., and Terry, T.A. 2005. Harvest residue and competing vegetation affect soil moisture, soil temperature, N availability, and Douglas-fir seedling growth. Forest Ecology and Management 205: 333-350. https://doi.org/10.1016/j.foreco.2004.10.036
  31. Shibuya, M., Hasaba, H., Yajima, T. and Takahashi, K. 2005. Effect of thinning on allometry and needle-age distribution of trees in natural Abies stands of northern Japan. Journal of Forest Research 10(1): 15-20. https://doi.org/10.1007/s10310-004-0093-z
  32. Stinson, G., Kurz, W.A., Smyth, C.E., Neilson, E.T., Dymond, C.C. Metsaranta, J.M., Boisvenue, C., Rampley, G.J., Li, Q., White, T.M. and Blains, D. 2011. An inventorybased analysis of Canada's managed forest carbon dynamics, 1990 to 2008. Global Change Biology 17(6): 2227-2244. https://doi.org/10.1111/j.1365-2486.2010.02369.x
  33. Yi, K., Park, C.W., Ryu, S.R., Lee, K.H. Yi, M.J., Kim, C., Park, G.S., Kim, R. and Son, Y. Simulating the soil carbon dynamics of Pinus densiflora forests in central Korea. Scandinavian Journal of Forest Research. In press.

Cited by

  1. Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey vol.73, pp.2, 2016, https://doi.org/10.1007/s13595-016-0546-5
  2. Piloting the FBDC Model to Estimate Forest Carbon Dynamics in Bhutan vol.34, pp.2, 2013, https://doi.org/10.11626/kjeb.2016.34.2.073