DOI QR코드

DOI QR Code

Relationships Between Edge Formation of Burned Forests and Landscape Characteristics with Consideration on Spatial Autocorrelation

공간 자기상관성을 고려한 산불피해지 경계 형성과 경관특성변수들과의 관계

  • Lee, Sang-Woo (Department of Environmental Science, Konkuk University) ;
  • Won, Myoung-Soo (Division of Forest Disaster Management, Korea Forest Research Institute) ;
  • Lee, Hyun-Joo (Department of Environmental Science, Graduate School, Konkuk University)
  • 이상우 (건국대학교 환경과학과) ;
  • 원명수 (국립산림과학원 산불방재과) ;
  • 이현주 (건국대학교 대학원 환경과학과)
  • Published : 2013.03.31

Abstract

It has been known that edges of forest fire areas play significant roles in post-fire change of forest ecosystem and recovery process. The purpose of this study was to analyze the relationships between edge formation of burned forests and landscape characteristics with consideration on spatial autocorrelation. Samcheok fire site burned in 2000 was selected as the study area. Seven hundred fifty three of 500 $m^2$ grid cells were generated for measuring landscape characteristics. This study used the topographic variables including slop, elevation, topographic wetness index, solar radiation index and proportions of fuel and land use types. In delineating landscape characteristics correlation analysis with modified t-test were performed for exploring the relationships between edge formation and landscape characteristics. The results indicated that edge formation of burned forests was positively correlated with most variables including TWI, SRI, water, paddy, developed, farm, grass, bare soil, and negatively related with elevation, slope and all fuel types. Especially TWI (r=0.437) showed a strong positive correlation with edge formation. According to the results, edge of burned forests were likely formed when proportions of heterogeneous land use types were high with mild slope and low elevation.

가장자리는 산불 피해 후 산림생태계 변화 및 회복과정에 중요한 역할을 하는 것으로 알려져 있다. 본 연구는 산불피해지의 공간 자기상관성을 고려하여 산불피해지 가장자리 형성과 경관특성변수들과의 관계 분석에 목적을 두고 수행되었다. 연구대상지로는 2000년도에 발생한 삼척 산불피해지를 선정하였으며, 대상지내 경관특성변수 측정을 위하여 산불피해지 전 지역을 포함하도록 500 $m^2$ 격자를 생성하였다. 연구에 사용된 경관 특성 변수들로는 표고, 경사, TWI(Topographic Wetness Index), SRI(Solar Radiation Index)을 사용하였고, 연료유형변수와 토지피복 변수를 포함시켰다. 격자들은 산불피해지 경계선과 교차하는 격자는 가장자리로 그 외의 격자들은 내부지역으로 설정하였다. 공간자기 상관을 보정하기 위하여 경관 변형된 t-검정과 상관분석을 실시하였다. 분석 결과 산불피해지 경계 형성과 양의 관계를 보이는 변수는 TWI, SRI, 물, 전, 답, 개발지, 나대지이며, 음의 관계를 보이는 경관특성변수는 경사, 표고, 그리고 모든 연료 유형 변수들이었다. 특히 TWI은 r=0.437로 경계형성과 강한 양의 관계를 보였다. 따라서 산불 피해지의 경계는 산림과 이질적인 토지피복 혹은 토지이용이 존재하는 경우와 경사가 완만하고 표고는 낮으며, 토양 및 지표면의 상대습도가 높은 지형에서 형성될 가능성이 높은 것으로 나타났다.

Keywords

References

  1. 산림청, 2001. 2001년 산림청 연차보고서, 산림청.
  2. 이상우, 원명수, 이현주. 2012. 산불 피해강도의 공간 자기상관성 검증에 관한 연구. 한국임학회지 101(2): 203-212.
  3. 이주미, 원명수, 임주훈, 이상우. 2012. 가장자리와 산불 피해강도가 산불피해지역 초기식생에 미치는 효과. 한국임학회지 101(1): 121-129.
  4. Agee, J.K. 2003. Monitoring postfire tree mortality in mixed-conifer forests of Crater Lake, Oregon. Natural Areas Journal 23: 114-120.
  5. Baker, K., French, K. and Whelan, R.J. 2002. The edge effect and ecotonal species: bird communities across a natural edge in southeastern Australia. Ecology 83: 3048-3059. https://doi.org/10.1890/0012-9658(2002)083[3048:TEEAES]2.0.CO;2
  6. Cadenasso, M.L., Traynor, M.M. and Pickett, S.T.A. 1997. Functional location of forest edges: gradients of multiple physical factors. Canadian Journal of Forest Research 27: 774-782. https://doi.org/10.1139/x97-013
  7. Calbk, M.E., White, D. and Kiester, A.R. 2002. Assessment of spatial autocorrelation in empirical models of ecology. in: Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. and Samson, F.B. ed. Predicting Species Occurrences: Issues of Scale and Accuracy, Island Press, Washington, DC. pp. 429-440.
  8. Collins, B.M., Kelly, M., van Wagtendonk, J.W. and Stephens, S.L. 2007. Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landscape Ecology 22: 545-557. https://doi.org/10.1007/s10980-006-9047-5
  9. Davies-Colley, R.J., Payne, G.W. and van Elswijk, M. 2000. Microclimate gradients across a forest edge. New Zealand Journal of Ecology 24(2): 111-121.
  10. Didham, R.K., Lawton, J.H. 1999. Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31: 17-30.
  11. Dorner, B., Lertzman, K. and Fall, J. 2002. Landscape pattern in topographically complex landscapes: issues and techniques for analysis. Landscape Ecology 17: 729-743. https://doi.org/10.1023/A:1022944019665
  12. Dutilleul, P. 1993. Modifying the t test for assessing correlation between two spatial processes. Biometrics 49: 305-314. https://doi.org/10.2307/2532625
  13. Forman, R.T.T. 1995. Land Mosaics. The Ecology of Landscapes and Regions. Cambridge University Press, Cambridge, UK.
  14. Fortin, M.-J., Drapeau, P. and Legendre, P. 1989. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83: 209-222. https://doi.org/10.1007/BF00031693
  15. Gamma Design Software. 2011. Geostatistics for the environmental science.
  16. Gosz, J.R., 1991. Fundamental ecological characteristics of landscape boundaries in: Holland.
  17. Gruber, S. and Peckham, S. 2008. Land-surface parameters and objects in hydrology. In: Hengl, T., Reuter, H.I. (Eds.), Geomorphometry: Concepts, Software, Applications, Developments in Soil Science. Elsevier, Amsterdam. pp. 171-194.
  18. Haining, R. 2003. Spatial Data Analysis: Theory and Practice. Cambridge University Press, Cambridge.
  19. Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J.Q., Brosofske, K.D., Saunders, S.C., Euskirchen, E.S., Roberts, D., Jaiteh, M.S. and Esseen, P. 2005. Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 19: 768-782. https://doi.org/10.1111/j.1523-1739.2005.00045.x
  20. Hessburg, P.F., Agee, J.K. and Franklin, J.F. 2005. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modem eras. Forest Ecology and Management 211: 117-139. https://doi.org/10.1016/j.foreco.2005.02.016
  21. Hilmo, O. and Holien, H. 2002. Epiphytic lichen response to the edge environment in a boreal Picea bies forest in central Norway. Bryologist 105: 48-56. https://doi.org/10.1639/0007-2745(2002)105[0048:ELRTTE]2.0.CO;2
  22. Hirobe, M., Tokuchi, N., Wachrinrat, C. and Taeda, H. 2003. Fire history influences on the spatial heterogeneity of soil nitrogen transformations in three adjacent stands in a dry tropical forest in Thailand. Plant Soil 249: 309-318. https://doi.org/10.1023/A:1022804326662
  23. Kellogg, D., McKenzie, D.L., Peterson and A.E., Hessl. 2008. Spatial models for inferring topographic controls on historical low-severity fire in the eastern Cascade Range of Washington, USA. Landscape Ecology 23: 227-240. https://doi.org/10.1007/s10980-007-9188-1
  24. Kerby, J.D., Fuhlendorf, S.D. and Engle, D.M. 2007. Landscape heterogeneity and fire behavior: scale-dependent feedback between fire and grazing processes. Landscape Ecology 22: 507-516. https://doi.org/10.1007/s10980-006-9039-5
  25. Kushla, J.D. and Ripple, W.J. 1997. The role of terrain in a fire mosaic of a temperate coniferous forest. Forest Ecology and Management 95: 97-107. https://doi.org/10.1016/S0378-1127(97)82929-5
  26. Lee, S.W., Lee, M.B., Lee, Y.G., Won, M.S., Kim, J.J. and Hong, S.K. 2009. Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck, South Korea. Forest Ecology and Management 258: 1594-1604. https://doi.org/10.1016/j.foreco.2009.07.017
  27. Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659-1673. https://doi.org/10.2307/1939924
  28. Lloret, F., Calvo, E., Pons, X. and Díaz-Delgado, E. 2002. Wildfires and landscape patterns in the eastern Iberian Peninsula. Landscape Ecology 17: 745-759. https://doi.org/10.1023/A:1022966930861
  29. Luke, R.H. and McArthur, A.G. 1978. Bushfires in Australia. Canberra, Australia: Australian Government Printing Service.
  30. Molina-Martinez, J.M., Machuca, M.E., Diaz, R.Z., Rodriguezy Silva, F. and Gonzalez-Caban, A. 2011. Economic losses to Iberian swine production due forest fires. Forest Policy and Economics 13: 614-621. https://doi.org/10.1016/j.forpol.2011.07.011
  31. McCune, B. and Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13(4): 603-606. https://doi.org/10.1111/j.1654-1103.2002.tb02087.x
  32. Montane, F., Casals, P., Taull, M., Lambert, B. and Dale, M.R.T. 2009. Spatial patterns of shrub cover after different fire disturbances in the Pyrenees. Annals of Forest Science 66(6): 612. https://doi.org/10.1051/forest/2009050
  33. Rangel, T.F., Diniz, J.A.F. and Bini, L.M. 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33: 46-50. https://doi.org/10.1111/j.1600-0587.2009.06299.x
  34. Richardson, A.D., Anderson, R.S., Arain, M.A., Barr, A.G., Bohrer, G., Chen, G., Chen, J.M., Ciais, P., Davis, K.J., Desai, A.R., Dietze, M.C., Dragoni, D., Garrity, S.R., Gough, C.M., Grant, R., Hollinger, D.Y., Margolis, H.A., Mccaughey, H., Migliavacca, M., Monson, R.K., Munger, J.W., Poulter, B., Raczka, B.M., Ricciuto, D.M., Sahoo, A.K., Schaefer, K., Tian, H., Vargas, R., Verbeeck, H., Xiao, J. and Xue, Y. 2012. Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis. Global Change Biology 18: 566-584. https://doi.org/10.1111/j.1365-2486.2011.02562.x
  35. Ries, L., Fletcher, R.J.J., Battin, J. and Sisk, T.D. 2004. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annual Review of Ecology, Evolution and Systematics 35: 491-522. https://doi.org/10.1146/annurev.ecolsys.35.112202.130148
  36. Siljander, M. 2009. Predictive fire occurrence modelling to improve burned area estimation at a regional scale: a case study in East Caprivi, Namibia. International Journal of Applied Earth Observation and Geoinformation 11(6): 380-393. https://doi.org/10.1016/j.jag.2009.06.004
  37. Turner, M.G., Hargrove, W.W., Gardner, R.H. and Romme, W.H. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science 5: 731-742. https://doi.org/10.2307/3235886
  38. Ubysz, B., Szczygiel, R. and Piwnicki, J. 2006. Analysis of the trends in the forest fire risk for recent years in Poland against the background of long-term trends. Proceedings of the 5th International Conference on Forest Fire Research, 27-30 November, 2006, Figueira da Foz, Portugal, Edited by D.X. Viegas, ADAI/CEIF University of Coimbra, Portugal, ELSEVIER Amsterdam-Boston-Jena-London-New York-Oxford-Paris-Philadelphia-San Diego-St. Louis, Proceedings on the CD-rom, Abstracts in the Forest Ecology and Management Vol. 234, Supplement 1 (2006), pp. 11. index 245, S248.
  39. Viegas, D.X., Viegas, T.P. and Ferreira, A.D. 1992. Moisture content of fine forest fuels and fire occurrence in central Portugal. International Journal of Wildland Fire 2: 69-85. https://doi.org/10.1071/WF9920069
  40. Wimberly, M.C. and Reilly, M.J. 2007. Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of Environment 108: 189-197. https://doi.org/10.1016/j.rse.2006.03.019
  41. Wood, S.W., Murphy, B.P. and Bowman, D.M.J.S. 2011. Firescape ecology: how topography determines the contrasting distribution of fire and rain forest in the southwest of the Tasmanian Wilderness World Heritage Area. Journal of Biogeography 38(9): 1807-1820. https://doi.org/10.1111/j.1365-2699.2011.02524.x