The Anti-scale Effect according to Array of Magnetic Device

자화장치의 배열별 스케일 생성 억제 효과

  • Nam, Joongwoo (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Han, Yunsu (Dept. of Ocean Industry Research Hyundai Heavy Industries Co., LTD.) ;
  • Lee, Jonghwi (Dept. of Ocean Industry Research Hyundai Heavy Industries Co., LTD.) ;
  • Chun, Byungsik (Dept. of Civil and Environmental Engineering, Hanyang University)
  • Published : 2013.02.01

Abstract

Clogging phenomenon in drainage system is one of the important problems and this phenomenon would be bad effect to structure of tunnel, so it needs a remedy urgently. Recently, scale in drainage pipe is removed by water jet cleaning and other treatment. But these treatments need much cost and regular management. In this study, magnetic device was used to solve this problem and an effect of prohibiting scale in accordance with array of magnetic device was investigated. Analysis method was visual analysis and measuring weight of each pipes. As a result, interior top and out-bottom (CASE II) was the most effective array to prohibit scale. and interior left and right (CASE III), interior top and bottom (CASE I) was effective for prohibiting scale in order.

배수공의 막힘 현상은 노후화된 터널의 가장 큰 문제점으로 보수 책 공법이 시급한 실정이며 장기적으로 보아 상승된 지하수위는 터널의 구조에 악영향을 미칠 수 있다. 현재까지의 유지 관리 방식은 Water Jet Cleaning과 배수공 내 초고압수를 분사하는 방식 등으로 배수공 내 생성된 스케일을 제거하고 있지만, 이러한 공법은 비용이 비싸고 주기적으로 관리가 필요한 단점이 있다. 본 연구에서는 이러한 문제점을 해결하고 반영구적으로 배수공 내 침전물 생성을 방지하기 위한 기술 중 자화장치를 사용하였다. 자화장치를 상하 내부(CASE I), 상내부 하외부(CASE II), 좌우 내부 배열(CASE III)로 배치하여 무게 분석과 육안 분석을 통하여 각 배열별 스케일 생성 억제 효과를 살펴보았다. 그 결과, 상내부 하외부 배열에서 가장 스케일이 적게 생성된 것을 발견할 수 있었으며 좌우 내부 배열, 상하 내부 배열 순으로 스케일의 생성을 억제하는 데 효과가 있는 것으로 나타났다.

Keywords

References

  1. Chun, B. S. (2011), Development of advanced drainage systems to improve the deteriorated tunnels, Hanyang University, pp. 26-31 (in Korean).
  2. Gabrielli, C., Jaouhari, R., Maurin, G. and Keddam, M. (2001), Magnetic water treatment for scale prevention, Water Research, Mark van Loosdrecht, Vol. 35, No. 13, pp. 3249-3259. https://doi.org/10.1016/S0043-1354(01)00010-0
  3. Higashitani, K., Kage, A., Katamura, S., Imai, K. and Hatade, S. (1993), Effects of a magnetic field on the formation of CaCO3 particles, Journal of Colloid and Interface Science, Vol. 156, No. 1, pp. 90-95. https://doi.org/10.1006/jcis.1993.1085
  4. Kim, D. G. (2009), Development of Safety Maintenance and disaster prevention Technology(III), Korea Institute of Construction Technology, pp. 24-55 (in Korean).
  5. Klabunde, K. J. and Richards, R. M. (2001), Nanoscale materials in vhemistry, John Wiley&Sons, Wiley Inter Science, pp. 24-25.
  6. Kobe, S., Drazic, G., McGuiness, P. J. and Strazisar, J. (2001), TEM examination of the influence of magnetic field on the crystallisation form of calcium carbonate : a magnetic watertreatment device, Acta Chimica Slovenica, pp. 77-86.
  7. Lee, J. H., Nam, J. W., Do, J. N., Jung, K. S., Chun, B. S. (2012), Evaluation for treatment of advanced drainage systems in the deteriorated tunnels, World Tunnel Congress 2012, pp. 693-694.
  8. Nam, J. W., Lee, C. G., Lee, J. H., Do, J. N. and Chun, B. S. (2011), The control method of scale in drainage pipe of ceteriorated tunnel used magnetic field and quantum stick, Journal of Korean Geo-Enviromental Society, Vol. 12, No. 11, pp. 59-64 (in Korean).
  9. Nebel, H. and Epple, M. (2008), Continuous preparation of calcite, aragonite and vaterite, and of magnesium-substituted amorphous calcium carbonate (Mg-ACC), Journal of Inorganic and General Chemistry, Vol. 634, No. 8, pp. 45-57.
  10. Reddi, L. N. Ming, X. Hajra, M. G. and Lee, I. M. (2002), Permeability reduction of soil filters due to physical clogging, Journal of Geotechnical and GeoEnvironmental Engineering, Vol. 126, No. 3, pp. 236-246.
  11. Shin, J. H., Addenbrooke, T. I. and Potts, D. M. (2002), A numerical study of the effect of groundwater movement on long-term tunnel behaviour, Geotechnique, Vol. 52, No. 6, pp. 391-403. https://doi.org/10.1680/geot.2002.52.6.391