Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on Benzo[1,2,5]thiadiazole

Benzo[1,2,5]thiadiazole을 기본 골격으로 한 공액고분자의 합성 및 광전변환특성 연구

  • Bea, Jun Huei (Department of Polymer Engineering, Pukyong National University) ;
  • Lim, Gyeong Eun (Department of Polymer Engineering, Pukyong National University) ;
  • Kim, Joo Hyun (Department of Polymer Engineering, Pukyong National University)
  • 배준휘 (부경대학교 고분자공학과) ;
  • 임경은 (부경대학교 고분자공학과) ;
  • 김주현 (부경대학교 고분자공학과)
  • Published : 2013.08.10

Abstract

Alternating copolymers, poly[9-(2-octyl-dodecyl)-9H-carbazole-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PCD20TBT) and poly[9,10-bis-(2-octyl-dodecyloxy)-phenanthrene-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PN40TBT), were synthesized by the Suzuki coupling reaction. The copolymers were soluble in common organic solvents such as chloroform, chlorobenzene, 1,2-dichlorobenzene, tetrahydrofuran and toluene. The maximum absorption wavelength and the band gap of PCD20TBT were 535 nm and 1.75 eV, respectively. The maximum absorption wavelength and the band gap of PN40TBT were 560 nm and 1.97 eV, respectively. The HOMO and the LUMO energy level of PCD20TBT were -5.11 eV and -3.36 eV, respectively. As for PN40TBT, the HOMO and the LUMO energy level of PCD20TBT were -5.31 eV and -3.34 eV, respectively. The polymer solar cells (PSCs) based on the blend of copolymer and PCBM (1 : 2 by weight ratio) were fabricated. The power conversion efficiencies of PSCs based on PCD20TBT and PN40TBT were 0.52% and 0.60%, respectively. The short circuit current density ($J_{SC}$), fill factor (FF) and open circuit voltage ($V_{OC}$) of the device with PCD20TBT were $-1.97mA/cm^2$, 38.2% and 0.69 V. For PN40TBT, the $J_{SC}$, FF, and $V_{OC}$ were $-1.77mA/cm^2$, 42.9%, and 0.79 V, respectively.

Benzo[1,2,5]thiadiazole, carbazole 및 phenanthrene을 기본 골격으로 한 교대공중합체인 poly[9-(2-octyl-dodecyl)-9H-carbazole-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PCD20TBT)와 poly[9,10-bis-(2-octyl-dodecyloxy)-phenanthrene-alt-4,7-di-thiophen-2-yl-benzo[1,2,5]thiadiazole] (PN40TBT)을 Suzuki coupling reaction을 이용하여 중합하였다. 합성한 고분자들은 chloroform, chlorobenzene, 1,2-dichlorobenzene, tetrahydrofuran, toluene과 같은 유기용매에 대한 용해도가 우수하였다. PCD20TBT의 최대흡수 파장과 밴드갭은 각각 535 nm와 1.75 eV이고, PN40TBT의 최대흡수 파장과 밴드갭은 각각 560 nm과 1.97 eV이었다. PCD20TBT의 HOMO 및 LUMO 에너지준위는 각각 - 5.11 eV와 - 3.36 eV이고, PN40TBT의 HOMO 및 LUMO 에너지준위는 각각 -5.31 eV와 -3.34 eV이었다. 합성한 고분자와 (6)-1-(3-(methoxycarbonyl)-{5}-1-phenyl[5,6]-fullerene(PCBM)을 1:2의 중량비로 블랜딩하여 제작한 이종접합형태(bulk heterojunction) 태양전지를 제작하였다. PCD20TBT의 광전변환효율은 0.52%, PN40TBT의 광전변환효율은 0.60%이었다. 그리고 소자의 단락 전류밀도, 충진 인자와 개방전압은 PCD20TBT가 각각 $-1.97mA/cm^2$, 38.2%, 0.69 V이며, PN40TBT의 경우 각각 $-1.77mA/cm^2$, 42.9%, 0.79 V이었다.

Keywords

References

  1. T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya, Sol. Energy, 85, 1580 (2011). https://doi.org/10.1016/j.solener.2010.12.002
  2. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater., 21, 1323 (2009). https://doi.org/10.1002/adma.200801283
  3. W. L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005). https://doi.org/10.1002/adfm.200500211
  4. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, Nature Mater., 5, 197 (2006). https://doi.org/10.1038/nmat1574
  5. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Func. Mater., 15, 1617 (2005). https://doi.org/10.1002/adfm.200500211
  6. J. Hou, H. Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, and G. Li, J. Am. Chem. Soc., 131, 15586 (2009). https://doi.org/10.1021/ja9064975
  7. J. Roncali, Chem. Rev., 97, 173 (1997). https://doi.org/10.1021/cr950257t
  8. J. F. Morin, M. Leclerc, D. Ades, and A. Siove, Macromol. Rapid Commun., 26, 761 (2005). https://doi.org/10.1002/marc.200500096
  9. N. Berton, I. Fabre-Francke, D. Bourrat, F. Chandezon, and S. Sadki, J. Phys. Chem. B, 113, 14087 (2009).
  10. W. M. Zhang, J. Smith, S. E. Watkins, R. Gysel, M. McGehee, A. Salleo, J. Kirkpatrick, S. Ashraf, T. Anthopoulos, M. Heeney, and I. McCulloch, J. Am. Chem. Soc., 132, 11437 (2010). https://doi.org/10.1021/ja1049324
  11. Y.-J. Cheng, S.-H. Yang, and C.-S. Hsu, Chem. Rev., 109, 5868 (2009). https://doi.org/10.1021/cr900182s
  12. M. Sailer, A. W. Franz, and T. J. J. Müller, Chem. Eur. J., 14, 2602 (2008). https://doi.org/10.1002/chem.200701341
  13. M. Sonntag and P. Strohriegl, Chem. Mater., 16, 4736 (2004). https://doi.org/10.1021/cm040142i
  14. S. Zeng, L. Yin, X. Jiang, Y. Li, and K. Li, Dyes and Pigments, 95, 229 (2012). https://doi.org/10.1016/j.dyepig.2012.04.001
  15. W. Shin, H. You, J. B. Park, S. J. Park, M. S. Jeong, M. J. Moon, and J. H. Kim, Appl. Chem. Eng., 21, 137 (2010).
  16. M. C. Hwang, J. W. Jang, T. K. An, C. E. Park, Y. H. Kim, and S. K. Kwon, Macromolecules, 45, 4520 (2012). https://doi.org/10.1021/ma300540f
  17. J. C. Hummelen, B. W. Knight, F. LePeq, and F. Wudl, J. Org. Chem., 60, 532 (1995). https://doi.org/10.1021/jo00108a012
  18. D. A. M. Egbe, L. H. Nguyen, H. Hoppe, D. Muhlbacher, and N. S. Sariciftci, Macromol. Rapid Commun., 26, 1389 (2005). https://doi.org/10.1002/marc.200500425
  19. C. Y. Kuo, M. S. Su, G. Y. Chen, C. S. Ku, H. Y. Lee, and K. H. Wei, Energy Environ. Sci., 4, 2316 (2011). https://doi.org/10.1039/c1ee01283e
  20. T. Yamamoto and B. L. Lee, Macromolecules, 35, 2993 (2002). https://doi.org/10.1021/ma011632o