HEPA Filter Tests Using PLS and Composite Nanospheres

PLS 및 복합 나노구체를 이용한 HEPA 필터 시험

  • Hwang, Min-Jin (Center for Functional Nano Fine Chemicals and School of Applied Chemical Engineering, Chonnam National University) ;
  • Sung, Dong Chan (Dong Yang Chemical Co., Ltd.) ;
  • Moon, Hee (Center for Functional Nano Fine Chemicals and School of Applied Chemical Engineering, Chonnam National University)
  • 황민진 (전남대학교 공과대학 신화학소재공학과) ;
  • 성동찬 (동양화학) ;
  • 문희 (전남대학교 공과대학 신화학소재공학과)
  • Published : 2013.08.10

Abstract

Monodispersed polystyrene latex spheres (PLS) and PS-MPS/silica composite nanospheres were used to test high efficiency particulate air (HEPA) filters. Prior to filter tests, all nanospheres used in this work were characterized by measuring their average particle diameters and coefficients of variation (CV) for assessing them as artificial dusts. The average particle sizes of PLS and composite nanospheres could be well controlled in the range of 100~300 nm well by changing reaction temperature and the amount of a stabilizer during emulsion polymerization. The CV of all nanospheres were also in the range of 3~7%, lower than 15% that is the criterion for monodispersed particle distributions. Furthermore the results of HEPA filter tests show that all nanospheres used were quite proper as artificial dusts for testing air filters.

High efficiency particulate air (HEPA) 필터를 시험하기 위하여 단분산 polystyrene latex spheres (PLS) 및 PS-MPS/실리카복합 나노구체가 이용되었다. 사용된 모든 나노구체들은 필터시험 전에 평균입경과 변동계수 값을 측정하여 시험용 인조먼지로서 적정함을 평가하였다. PLS 및 복합 나노구체의 입경은 유화중합 중 반응온도와 안정제의 양을 조절하여 100~300 nm 범위에서 잘 조절되었으며, 변동계수의 경우도 단분산 입자분포로 판단되는 15%보다 낮은 3~7% 범위이었다. 한편 HEPA 필터시험 결과는 사용된 모든 나노구체들이 공기필터의 시험을 위한 시험용 인조먼지로서 아주 적절함을 보여주었다.

Keywords

References

  1. S. Paet, D. Boulaud, G. Madelaine, and A. Renoux, J. Aerosol. Sci., 23, 723 (1992). https://doi.org/10.1016/0021-8502(92)90039-X
  2. R. L. Gorny, T. Reponen, S. A. Grinshpun, and K. Willeke, Atmos. Environ., 35, 4853 (2001). https://doi.org/10.1016/S1352-2310(01)00261-8
  3. I. H. Yoon, W. K. Choi, S. C. Lee, B. Y. Min, H. C. Yang, and K. W. Lee, J. Hazard. Mater., 219, 240 (2012).
  4. G. Geschwind and D. Stanley, J. Aerosol. Sci., 27, 5635 (1996).
  5. R. Weper, Filtr. Sep., 31, 781 (1994). https://doi.org/10.1016/0015-1882(94)80522-9
  6. S. Rengasamy and B. C. Eimer, J. Occup. Environ. Hyg., 9, 99 (2012). https://doi.org/10.1080/15459624.2011.642703
  7. http://en.wikipedia.org/wiki/HEPA.
  8. A. Gupta, V. J. Novick, P. Biswas, and P. R. Monson, Aerosol Sci. Technol., 19, 94 (1993). https://doi.org/10.1080/02786829308959624
  9. Z. Nie, A. Petukhova, and E. Kumacheva, Nat. Nanotechnol., 5, 15 (2010). https://doi.org/10.1038/nnano.2009.453
  10. T. Chen, P. J. Colver, and S. A. F. Bon, Adv. Mater., 19, 2286 (2007). https://doi.org/10.1002/adma.200602447
  11. N. Hagura, W. Widiyastuti, F. Iskandar, and K. Okuyama, Chem. Eng. J., 156, 200 (2010). https://doi.org/10.1016/j.cej.2009.10.024
  12. O. H. Kim, D. W. Ryu, D. C. Sung, and H. Moon, Appl. Chem. Eng., 23, 59 (2012).
  13. C. S. Chern, Prog. Polym. Sci., 31, 443 (2006). https://doi.org/10.1016/j.progpolymsci.2006.02.001
  14. S. W. Zhang, S. X. Zhou, Y. M. Weng, and L. M. Wu, Langmuir, 22, 4674 (2006). https://doi.org/10.1021/la053106m
  15. C. T. Lin, S. W. Kuo, C. F. Huang, and F. C. Chang, Polymer, 51, 883 (2010). https://doi.org/10.1016/j.polymer.2009.12.039
  16. V. Monteil, J. Stumbaum, R. Thomann, and S. Mecking, Macromolecules, 39, 2056 (2006). https://doi.org/10.1021/ma052737k
  17. B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, Adv. Colloid Interf. Sci., 170, 28 (2012). https://doi.org/10.1016/j.cis.2011.11.002
  18. C. S. Wang and Y. Otani, Ind. Eng. Chem. Res., 52, 5 (2013). https://doi.org/10.1021/ie300574m