고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층

Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors

  • 이민정 (인하대학교 섬유신소재공학과) ;
  • 이슬이 (인하대학교 섬유신소재공학과) ;
  • 유재석 (인하대학교 섬유신소재공학과) ;
  • 장미 (인하대학교 섬유신소재공학과) ;
  • 양회창 (인하대학교 섬유신소재공학과)
  • Lee, Minjung (Department of Advanced Fiber Engineering, Inha University) ;
  • Lee, Seulyi (Department of Advanced Fiber Engineering, Inha University) ;
  • Yoo, Jaeseok (Department of Advanced Fiber Engineering, Inha University) ;
  • Jang, Mi (Department of Advanced Fiber Engineering, Inha University) ;
  • Yang, Hoichang (Department of Advanced Fiber Engineering, Inha University)
  • 발행 : 2013.06.10

초록

차세대 전자 디스플레이 관련 제품의 휴대편리성, 유연성, 경량화, 대형화 등의 요구조건을 확보할 수 있는 유기반도체 소재기반 소프트 일렉트로닉스에 많은 관심이 모아지고 있다. 소프트 일렉트로닉스의 응용분야로는 전자 신문, 전자 책, 스마트카드, RFID 태그, 태양전지, 휴대용 컴퓨터, 센서, 메모리 등이 있으며, 핵심소자는 유기 전계효과 트랜지스터(organic field-effect transistor, OFET)이다. OFET의 고성능화를 위해서는 유기반도체, 절연체, 전극 구성소재들이 최적화 구조를 형성하도록 적층되어야 한다. 필름형성화 과정에서 대부분의 유기반도체 소재는 결합력이 약한 van der Waals 결합으로 자기조립 결정구조를 형성하므로, 이들의 결정성 필름구조는 주위 환경(공정변수 및 기질특성)에 의해 크게 달라진다. 특히 기질의 표면 에너지(surface energy) 및 표면 거칠기(surface roughness)에 따라 유기반도체 박막 내 결정 구조 및 배향 등은 크게 달라져, OFET의 전기적 특성에 큰 차이를 미친다. 유기친화적 절연층 소재 및 표면개질화는 전하이동에 유리하도록 용액 및 증착공정 유기반도체 박막의 결정구조 및 배향을 유도시켜 OFET의 전기적 성능을 향상시킬 수 있다.

Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.

키워드

참고문헌

  1. S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nat. Mater., 9, 859 (2010). https://doi.org/10.1038/nmat2834
  2. Y. Guo, G. Yu, and Y. Liu, Adv. Mater., 22, 4427 (2010). https://doi.org/10.1002/adma.201000740
  3. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Tony, and Z. Bao, Nature, 480, 504 (2011). https://doi.org/10.1038/nature10683
  4. S. H. Kim, M. Jang, H. Yang, and C. E. Park, J. Mater. Chem., 20, 5612 (2010). https://doi.org/10.1039/b921371f
  5. D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, and J. E. Anthony, Nat. Mater., 7, 216 (2008). https://doi.org/10.1038/nmat2122
  6. C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, and S. Patil, J. Am. Chem. Soc., 134, 16532 (2012). https://doi.org/10.1021/ja308211n
  7. C. Cheng, C. Yu, Y. Guo, H. Chen, Y. Fang, G. Yu, and Y. Liu, Chem. Commun., 49, 1998 (2013). https://doi.org/10.1039/c2cc38811a
  8. I. Kang, T. K. An, J.-A. Hong, H.-J. Yun, R. Kim, D. S. Chung, C. E. Park, Y.-H. Kim, and S.-K. Kwon, Adv. Mater., 25, 524 (2013). https://doi.org/10.1002/adma.201202867
  9. H. Yang, S. W. Lefevre, C. Y. Ryu, and Z. Bao, Appl. Phys. Lett., 90, 172116 (2007). https://doi.org/10.1063/1.2734387
  10. H. Yang, T. J. Shin, Z. Bao, and C. Y. Ryu, J. Polym. Sci., Part B: Polym. Phys., 45, 1303 (2007). https://doi.org/10.1002/polb.21191
  11. M.-H. Yoon, C. Kim, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc., 128, 12851 (2006). https://doi.org/10.1021/ja063290d
  12. H. Yang, T. J. Shin, M.-M. Ling, K. Cho, C. Y. Ryu, and Z. Bao, J. Am. Chem. Soc., 127, 11542 (2005). https://doi.org/10.1021/ja052478e
  13. D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, and K. Cho, Adv. Funct. Mater., 15, 77 (2005). https://doi.org/10.1002/adfm.200400054
  14. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 105, 1103 (2005). https://doi.org/10.1021/cr0300789
  15. H. Yang, L. Yang, M.-M. Ling, S. Lastella, D. D. Gandhi, G. Ramanath, Z. Bao, and C. Y. Ryu, J. Phys. Chem. C, 112, 16161 (2008). https://doi.org/10.1021/jp8055224
  16. S. H. Kim, W. M. Yoon, M. Jang, H. Yang, J.-J. Park, and C. E. Park, J. Mater. Chem., 22, 7731 (2012). https://doi.org/10.1039/c2jm13329f
  17. L. Yang and H. Yang, J. Synchrotron Rad., 16, 788 (2009). https://doi.org/10.1107/S0909049509037911
  18. S. H. Kim, M. Jang, H. Yang, J. E. Anthony, and C. E. Park, Adv. Funct. Mater., 21, 2198 (2011). https://doi.org/10.1002/adfm.201002054
  19. T. B. Singh, N. S. Sariciftci, H. Yang, L. Yang, B. Plochberger, and H. Sitter, Appl. Phys. Lett., 90, 213512 (2007). https://doi.org/10.1063/1.2743386
  20. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  21. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater., 3, 317 (2004). https://doi.org/10.1038/nmat1105
  22. Y.-l. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, J. Am. Chem. Soc., 124, 7654 (2002). https://doi.org/10.1021/ja026355v
  23. Q. J. Cai, M. B. Chan-Park, Q. Zhou, Z. S. Lu, C. M. Li, and B. S. Ong, Org. Electron., 9, 936 (2008). https://doi.org/10.1016/j.orgel.2008.06.014
  24. D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys., 100, 024509 (2006). https://doi.org/10.1063/1.2215132
  25. H. Yang, C. Yang, S. H. Kim, M. Jang, and C. E. Park, ACS Appl. Mater. Interf., 2, 391 (2010). https://doi.org/10.1021/am900652h
  26. S. Kola, J. Sinha, and H. E. Katz, J. Polym. Sci., Part B: Polym. Phys., 50, 1090 (2012). https://doi.org/10.1002/polb.23054
  27. J. Veres, S. Ogier, and G. Lloyd, Chem. Mater., 16, 4543 (2004). https://doi.org/10.1021/cm049598q
  28. A. Ulman, Chem. Rev., 96, 1533 (1996). https://doi.org/10.1021/cr9502357
  29. D. H. Kim, H. S. Lee, H. Yang, L. Yang, and K. Cho, Adv. Funct. Mater., 18, 1363 (2008). https://doi.org/10.1002/adfm.200701019
  30. S. Y. Yang, K. Shin, S. H. Kim, H. Jeon, J. H. Kang, H. Yang, and C. E. Park, J. Phys. Chem., B, 110, 20302 (2006). https://doi.org/10.1021/jp0646527
  31. H. Yang, S. H. Kim, L. Yang, S. Y. Yang, and C. E. Park, Adv. Mater., 19, 2868 (2007). https://doi.org/10.1002/adma.200700560
  32. S. H. Kim, K. Hong, M. Jang, J. Jang, J. E. Anthony, H. Yang, and C. E. Park, Adv. Mater., 22, 4809 (2010). https://doi.org/10.1002/adma.201000904