Field Effect Transistors for Biomedical Application

전계효과트랜지스터의 생명공학 응용

  • Sohn, Young-Soo (Department of Biomedical Engineering, Catholic University of Daegu)
  • 손영수 (대구가톨릭대학교 의공학과)
  • Published : 2013.02.10

Abstract

As the medical paradigm is changing from disease treatment to disease prevention and an early diagonosis, the demand to develop techniques for the detection of minute concentrations of biomolecules is increasing. Among the various techniques to sense the minute concentration of biomolecules, the biosensors utilizing the matured semiconductor techniques are presented here. To understand such biosensors, the structure and working principle of a MOSFET (Metal-oxide-semiconductor field-effect transistor) which is the basic semiconductor device is firstly introduced, and then the ISFET (Ion sensitive FET), BioFET (Biologically modified FET), Nanowire FET, and IFET (Ionic FET) are introduced, and their applications to biomedical fields are discussed.

의료의 패러다임이 질병 치료에서 질변 예방 및 조기 진단으로 변화하면서 미량의 생분자를 측정할 수 있는 기술에 대한 수요가 증가하고 있다. 미량의 생분자를 측정할 수 있는 다양한 기술이 존재하는데 여기서는 성숙된 반도체 기술을 이용한 바이오센서에 대해 언급하고자 한다. 이의 이해를 돕기 위해 반도체의 기본 소자인 MOSFET (Metal-oxide-semiconductor field-effect transistor)의 구조와 원리를 소개하고, 이를 응용한 ISFET (Ion sensitive FET), BioFET (Biologically modified FET), Nanowire FET, 그리고 IFET (Ionic FET)에 대한 소개와 이의 생명공학에 대한 응용에 대해 논하고자 한다.

Keywords

References

  1. B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 6 th Ed., 239, Pearson Prentice Hall, New Jersey (2006).
  2. P. Bergveld, IEEE Trans. Biomed. Eng., BME-17, 70 (1970).
  3. P. Bergveld, Sens. Actuators B, 88, 1 (2003). https://doi.org/10.1016/S0925-4005(02)00301-5
  4. http://www.sentron.nl/sensors/isfet-ph-sensors/.
  5. L. Bousse and P. Bergveld, Sens. Actuators B, 6, 65 (1984). https://doi.org/10.1016/0250-6874(84)80028-1
  6. A. van den Berg, P. Bergveld, D. N. Reinhoudt, and E. J. R. Sudholter, Sens. Actuators B, 8, 129 (1985). https://doi.org/10.1016/0250-6874(85)87010-4
  7. B.-K. Sohn et. al., Sensor Engineering, 195, Iljinsa, Seoul, Korea (2012).
  8. M.-N. Niu, X.-F. Ding, and Q.-Y. Tong, Sens. Actuators B, 37, 13 (1996). https://doi.org/10.1016/S0925-4005(97)80067-6
  9. J.-C. Chou and C.-Y. Weng, Mater. Chem. Phys., 71, 120 (2001). https://doi.org/10.1016/S0254-0584(00)00513-7
  10. D.-H. Kwon, B.-W. Cho, C.-S. Kim, and B.-K. Sohn, Sens. Actuators B, 34, 441 (1996). https://doi.org/10.1016/S0925-4005(96)01938-7
  11. A. Morgenshtein, L. Sudakov-Boreysha, U. Dinnar, C. G. Jakobson, and Y. Nemirovsky, Sens. Actuators B, 98, 18 (2004). https://doi.org/10.1016/j.snb.2003.07.017
  12. B.-K. Sohn, B.-W. Cho, C.-S. Kim, and D.-H. Kwon, Sens. Actuators B, 41, 7 (1997). https://doi.org/10.1016/S0925-4005(97)80271-7
  13. W.-Y. Chunga, C.-H. Yang, D. G. Pijanowskac, P. B. Grabiec, and W. Torbicz, Sens. Actuators B, 113, 555 (2006). https://doi.org/10.1016/j.snb.2005.06.018
  14. M. J. Schoning and A. Poghossian, Analyst, 127, 1137 (2002). https://doi.org/10.1039/b204444g
  15. K.-Y. Park, Y.-S. Sohn, C.-K. Kim, H.-S. Kim, Y.-S. Bae, and S.-Y. Choi, Biosens. Bioelectron., 23, 1904 (2008). https://doi.org/10.1016/j.bios.2008.03.011
  16. Y.-S. Sohn, S.-K. Lee, and S.-Y. Choi, Sensor Lett., 5, 421 (2007). https://doi.org/10.1166/sl.2007.216
  17. Y.-S. Sohn, C.-K. Kim, and S.-Y. Choi, Sensor Lett., 7, 640 (2009). https://doi.org/10.1166/sl.2009.1119
  18. D.-S. Kim, Y.-T. Jeong, H.-J. Park, J.-K. Shin, P. Choi, J.-H. Lee, and G. Lim, Biosens. Bioelectron., 20, 69 (2004). https://doi.org/10.1016/j.bios.2004.01.025
  19. L. Wang, P. Estrela, E. Huq, P. Li, S. Thomas, P. K. Ferrigno, D. Paul, P. Adkin, and P. Migliorato, Microelectron. Eng., 47, 235 (1998).
  20. Y. Ishige, M. Shimoda, and M. Kamahori, Biosens. Bioelectron., 24, 1096 (2009). https://doi.org/10.1016/j.bios.2008.06.012
  21. D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim, and S. Shoji, Sens. Actuators B, 117, 488 (2006). https://doi.org/10.1016/j.snb.2006.01.018
  22. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science, 293, 1289 (2001). https://doi.org/10.1126/science.1062711
  23. M. Curreli, R. Zhang, F. N. Ishikawa, H.-K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, IEEE Trans. Nanotechnol., 7, 651 (2008). https://doi.org/10.1109/TNANO.2008.2006165
  24. Z. Gao, A. Agarwal, A. D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K. D. Buddharaju, and J. Kong, Anal. Chem., 79, 3291 (2007). https://doi.org/10.1021/ac061808q
  25. F. Patolsky, B. T. Timko, G. Zheng, and C. M. Lieber, MRS Bull., 32, 142 (2007). https://doi.org/10.1557/mrs2007.47
  26. A. Kim, C. S. Ah, H. Y. Yu, J.-H. Yang, I. B. Baek, C.-G. Ahn, C. W. park, M. S. Jun, and S. Lee, Appl. Phys. Lett., 91, 103901 (2007). https://doi.org/10.1063/1.2779965
  27. W. U. Wang, C. Chen, K.-H. Lin, Y. Fang, and C. M. Lieber, Proc. Natl. Acad. Sci., 102, 3208 (2005). https://doi.org/10.1073/pnas.0406368102
  28. E. Stern, J. K. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, Nature Lett., 445, 519 (2007). https://doi.org/10.1038/nature05498
  29. E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, Nano Lett., 7, 3405 (2007). https://doi.org/10.1021/nl071792z
  30. P. K. Gupta, Trends Biotechnol., 26, 602 (2008). https://doi.org/10.1016/j.tibtech.2008.07.003
  31. T. Kim and J. J. Pak, J. Sens. Sci. Technol., 21, 359 (2012). https://doi.org/10.5369/JSST.2012.21.5.359
  32. B. M. Venkatesan and R. Bashir, Nature Nanotech., 6, 615 (2011). https://doi.org/10.1038/nnano.2011.129
  33. M. Tsutsui, M. Taniguchi, K. Yokota, and T. Kawai, Nature Nanotech., 5, 286 (2010). https://doi.org/10.1038/nnano.2010.42
  34. X. Liang and S. Y. Chou, Nano Lett., 8, 1472 (2008). https://doi.org/10.1021/nl080473k
  35. H. W. Ch Postma, Nano Lett., 10, 420 (2010). https://doi.org/10.1021/nl9029237
  36. A. Singer, M. Wanunu, W. Morrison, H. Kuhn, M. Frank-Kamenetskii, and A. Meller, Nano Lett., 10, 738 (2010). https://doi.org/10.1021/nl100058y
  37. A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker, Nat. Mater., 2, 537 (2003). https://doi.org/10.1038/nmat941
  38. B. M. Venkatesan, A. B. Shah, J. M. Zuo, and R. Bashir, Adv. Funct. Mater., 20, 1266 (2010). https://doi.org/10.1002/adfm.200902128
  39. H. Liu, J. He, J. Tang, P. Pang, D. Cao, P. Krstic, S. Joseph, S. Lindsay, and C. Nuckolls, Science, 327, 64 (2010). https://doi.org/10.1126/science.1181799
  40. R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, and P. Yang, Nano Lett., 5, 1633 (2005). https://doi.org/10.1021/nl0509677
  41. S.-W. Nam, M. J. Rooks, K.-B. Kim, and S. M. Rossnagel, Nano Lett., 9, 2044 (2009). https://doi.org/10.1021/nl900309s