DOI QR코드

DOI QR Code

Development of transgenic potato with high content of sulphur-containing essential amino acids

황 함유 필수아미노산이 증대된 기능성 형질전환 감자 개발 현황

  • Goo, Young-Min (Sancheong Oriental Medicinal Herb Institute) ;
  • Kim, Tae-Won (Department of Agronomy & Medicinal Plant Resources, College of Life Science and Natural Resources, Gyungnam National University of Science & Technology) ;
  • Lee, Min-Kyung (Department of Agronomy & Medicinal Plant Resources, College of Life Science and Natural Resources, Gyungnam National University of Science & Technology) ;
  • Lee, Shin-Woo (Department of Agronomy & Medicinal Plant Resources, College of Life Science and Natural Resources, Gyungnam National University of Science & Technology)
  • 구영민 (산청한방약초연구소) ;
  • 김태원 (경남과학기술대학교 생명자원과학대학 농학.한약자원학부) ;
  • 이민경 (경남과학기술대학교 생명자원과학대학 농학.한약자원학부) ;
  • 이신우 (경남과학기술대학교 생명자원과학대학 농학.한약자원학부)
  • Received : 2013.03.26
  • Accepted : 2013.03.28
  • Published : 2013.03.31

Abstract

Potato is the 4th important crop along with rice, wheat and maize. It contains high quality of starch with relatively high content of vitamin C and protein. However, there is a nutritionally limiting factor due to a low level of sulphur-containing essential amino acid including methionine and cysteine. Recently, recombinant DNA technology and metabolic engineering with genes involved in the bio-synthetic pathway have been applied to enhance the level of these essential amino acids. In this report, it has been discussed about the current status and bottleneck on the development of transgenic potato containing high level of sulphur-containing essential amino acids.

감자는 벼, 보리, 밀과 함께 세계 4 대 식량작물에 속하며 고품질의 전분과 함께 비타민 C 함량이 높고 단백질의 함량도 높다. 그러나 메티오닌과 시스테인 등의 황 함유 아미노산과 함께 필수아미노산이 부족하여 영양학적으로 가치가 다소 낮다는 것이 단점이다. 따라서 최근에는 유전자재조합 기술 및 대사공학기술을 이용하여 이들 필수아미노산의 함량을 증대시키기 위한 연구가 활발히 진행되고 있다. 본 논문에서는 황 함유 필수 아미노산의 함량을 증가시키기 위한 연구현황 및 문제점 등을 조사하였다.

Keywords

References

  1. Altenbach SB, Pearson KW, Leung FW, Sun SSM (1987) Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine. Plant Mol Biol 13:513-522
  2. Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11: 251-262 https://doi.org/10.1046/j.1365-313X.1997.11020251.x
  3. Bryan JK (1980) Synthesis of the aspartate family and branchedchain amino acids. In: Miflin BJ (ed) The biochemistry of plants, vol 5. Academic Press, New York, pp 403-452
  4. Casazza AP, Basner A, Höfgen R, Hesse H (2000) Expression of threonine synthase from Solanum tuberosum L. is not metabolically regulated by photosynthesis-related signals or by nitrogenous compounds. Plant Sci 157:43-50 https://doi.org/10.1016/S0168-9452(00)00265-X
  5. Chakraborty S, Chakraborty N, Datta A (2000) Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci USA 97:3724-3729 https://doi.org/10.1073/pnas.97.7.3724
  6. Chiba Y, Ishikawa M, Kijima F, Tyson RH, Kim J, Yamamoto A, Mambara E, Leustek T, Wallsgrove RM, Naito S (1999) Evidence for autoregulation of cystathionine-synthase mRNA stability in Arabidopsis. Sci 286:1371-1374 https://doi.org/10.1126/science.286.5443.1371
  7. Dancs G, Mihaly Kondrak M, Banfalvi Z (2008) The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers. BMC Plant Biol 8:65-75 https://doi.org/10.1186/1471-2229-8-65
  8. Di R, Kim J, Martin MN, Leustck T, Jhoo J, Ho C-T, E. Tumer N (2003) Enhancement of the primary flavor compound methional in potato by increasing the level of soluble methionine. J Agric Food Chem 51:5695-57025 https://doi.org/10.1021/jf030148c
  9. Gakiere B, Denis L, Droux M, Job D (2002) Over-expression of cystathionine-synthase in Arabidopsis thaliana leads to increased levels of methionine and S-methylmethionine. Plant Physiol Biochem 40:119-126 https://doi.org/10.1016/S0981-9428(01)01354-7
  10. Hacham Y, Avraham T, Amir R (2002) The N-terminal region of Arabidopsis cystathionine-synthase plays an important role in methionine metabolism. Plant Physiol 128:454-462 https://doi.org/10.1104/pp.010819
  11. Hacham Y, Schuster G, Amir R (2006) An in vivo internal deletion in the N-terminus region of Arabidopsis cystathionine ${\gamma}$-synthase results in CGS expression that is insensitive to methionine. Plant J 45:955-967 https://doi.org/10.1111/j.1365-313X.2006.02661.x
  12. Harms K, von Ballmoos P, Brunold C, Hofgen R, Hesse H (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J 22:335-343 https://doi.org/10.1046/j.1365-313x.2000.00743.x
  13. Heremans B, Jacobs M (1995) Threonine accumulation in a mutant of Arabidopsis thaliana (L.) Heynh. with an altered aspartate kinase. J Plant Physiol 146:249-257 https://doi.org/10.1016/S0176-1617(11)82049-3
  14. Inaba K, Fujiwara T, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine. Plant Physiol 104:881-887 https://doi.org/10.1104/pp.104.3.881
  15. Jin UH, Jin BR, Lee JW, Cho YS, Kwon OC, Kim YK, Chung CH (2000) Characterization of a methionine-rich storage protein cDNA from perilla (Perilla frutescens) seeds. Aust. J. Plant Physiol 27:701-707
  16. Kapoor A, Desborough SL, Li PH (1975) Potato tuber proteins and their nutritional quality. Potato Res 18:469-478 https://doi.org/10.1007/BF02361913
  17. Kim J, Lee M, Chalam R, Martin MN, Leustek T, Boerjan W (2002) Constitutive overexpression of cystathionine-synthase in Arabidopsis leads to accumulation of soluble methionine and S-methylmethionine. Plant Physiol 128: 95-107 https://doi.org/10.1104/pp.101801
  18. Kirihara JA, Hunsperger JP, Mahoney WC, Messing JW (1988) Differential expression of a gene for a methionine-rich storage protein in maize Mol. Gen. Genet. 211:477-484 https://doi.org/10.1007/BF00425704
  19. Kreft O, Hoefgen R, Hesse H (2003) Functional analysis of cystathionine -synthase in genetically engineered potato plants. Plant Physiol 131:1843-1854 https://doi.org/10.1104/pp.102.015933
  20. Liedl BE, Kosier T, Desborough SL (1987) HPLC isolation and nutritional value of a major tuber protein. Amer. Potato J 64:545-557. https://doi.org/10.1007/BF02853753
  21. Maimann S, Wagner C, Kreft O, Zeh M, Willmitzer L, Hofgen R, Hesse H (2000) Transgenic potato plants reveal the indispensable role of cystathionine ${\beta}$-lyase in plant growth and development. Plant J. 23:747-758 https://doi.org/10.1046/j.1365-313x.2000.00842.x
  22. Maimann S, Hoefgen R, Hesse H (2001) Enhanced cystathionine ${\beta}$-lyase activity in transgenic potato plants does not force metabolite flow towards methionine. Planta 214:163-170 https://doi.org/10.1007/s004250100651
  23. Nikiforova V, Kempa S, Zeh M, Maimann S, Kreft O, Casazza AP, Riedel K, Tauberger E, Hoefgen R, Hesse H (2002) Engineering of cysteine and methionine biosynthesis in potato. Amino Acids 22:259-278 https://doi.org/10.1007/s007260200013
  24. Pavia E, Lister RM, Park WD (1983) Induction and accumulation of major tuber proteins of potato stems and petioles. Plant Physiol. 71:161-168 https://doi.org/10.1104/pp.71.1.161
  25. Pedersen K, Agros P, Naravana SVL, Larkins B (1986) Sequence analysis and characterization of a maize gene encoding a high-sulfur zein protein of Mr 15,000. J Biol Chem 261: 6279-6284
  26. Pots AM, Grotenhuis ET, Gruppen H, Voragen AGJ, de Kruif KG (1999) Thermal aggregation of patatin studied in situ. J Agric Food Chem 47:4600-4605 https://doi.org/10.1021/jf9901901
  27. Raina A, Datta A (1992) Molecular cloning of a gene encoding a seed-specific protein with nutritionall balanced amino acid composition from Amaranthus. Proc Natl Acad Sci USA 89:11774-11778 https://doi.org/10.1073/pnas.89.24.11774
  28. Ravanel S, Gakiere B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Nat Acad Sci USA 95:7805-7812 https://doi.org/10.1073/pnas.95.13.7805
  29. Rinder J, Casazza AP, Hoefgen R, Hesse H (2008) Regulation of aspartate-derived amino acid homeostasis in potato plants (Solanum tuberosum L.) by expression of E. coli homoserine kinase. Amino Acids 34:213-222 https://doi.org/10.1007/s00726-007-0504-5
  30. Ruffet M-L, Droux M, Douce R (1994) Purification and kinetic properties of serine acetyltransferase free of O-acetylserine (thiol)lyase from spinach chloroplasts. Plant Physiol 104: 597-604 https://doi.org/10.1104/pp.104.2.597
  31. Saito K, Kurosawa M, Tatsuguchi K, Tagaki Y, Murakoshi I (1994) Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase(O-acetylserine (thiol)-lyase, Plant Physiol 106:887-895 https://doi.org/10.1104/pp.106.3.887
  32. Shaul O, Galili G (1992) Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartate kinase of Escherichia coli. Plant Physiol 100:1157–1163 https://doi.org/10.1104/pp.100.3.1157
  33. Shewry PR (2003) Tuber storage proteins. Ann Bot 91:755-769 https://doi.org/10.1093/aob/mcg084
  34. Snyder JC, Desborough SL (1980) Total protein and protein fractions in tubers of Group Anigena and Phureja-Tuberosum hybrids. Qual Plant Foods Hum Nutr 30:123-134 https://doi.org/10.1007/BF01099050
  35. Stiller I, Dancs G, Hesse H, Hoefgen R, Bánfalvi Z (2007) Improving the nutritive value of tubers: Elevation of cysteine and glutathione contents in the potato cultivar White Lady by marker-free transformation. J Biotechnol 128:335-343 https://doi.org/10.1016/j.jbiotec.2006.10.015
  36. Sun SSM, Altenbach SB, Leung FW (1987) Properties, biosynthesis and processing of a sulfur-rich protein in Brazil nut (Bertholletia excelsa H.B.K.). Eur J Biochem 159:597-604
  37. Thompson GA, Datko AH, Mudd SH (1982) Methionine biosynthesis in Lemna: studies on the regulation of cystathionine gamma-synthase, O-phosphohomoserine sulfhydrylase, and O-acetyl sulfhydrylase. Plant Physiol 69:1077-1083 https://doi.org/10.1104/pp.69.5.1077
  38. Tu HM, Godfrey LW, Sun SSM (1998) Expression of the Brazil nut methionine-rich protein and mutants with increased methionine in transgenic potato. Plant Mol Biol 37:829-838 https://doi.org/10.1023/A:1006098524887
  39. Zeh M, Casazza AP, Kreft O, Roessner U, Bieberich K, Willmitzer L, Hoefgen R, Hesse H (2001) Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol 127:792-802 https://doi.org/10.1104/pp.010438

Cited by

  1. Quality Properties of Yogurt Added with Hot Water Concentrates from Allium hookeri Root vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1415
  2. Development and Optimization of a Reverse Transcription Hemi-Nested PCR Primer for the Detection of Potato Mop-Top Virus at Quarantine Inspection Sites in Korea vol.57, pp.2, 2017, https://doi.org/10.1007/s12088-016-0623-3