Anticancer Effects and Mechanisms of Co-Treatment of Cisplatin with Taurine in MCF-7 Cells

MCF-7에서 Cisplatin과 타우린의 병용처리로 인한 항암효과 및 관련 기전

  • Kim, Taehee (College of Pharmacy, Sookmyung Women's University) ;
  • Kim, An Keun (College of Pharmacy, Sookmyung Women's University)
  • 김태희 (숙명여자대학교 약학대학) ;
  • 김안 (숙명여자대학교 약학대학)
  • Received : 2013.02.15
  • Accepted : 2013.02.26
  • Published : 2013.02.28

Abstract

The objective of this study is to evaluate the synergic effects of combined treatment with taurine and cisplatin in human breast cancer, MCF-7 cells. For this study, MCF-7 cells were treated with taurine (5, 10, and 20 mM) and cisplatin (0.5 ${\mu}M$) for 48 and 72 hrs. Co-treatment of cisplatin with taurine decreased cell proliferation more compared with cisplatin alone. Reduced cell proliferation was caused by apoptosis. Therefore we investigated the apoptotic cells. After treatment of cisplatin and taurine, apoptotic cells were slightly increased. Apoptosis-related proteins, cleaved caspases and cytochrome c were increased. The present study suggests that combination treatment of cisplatin with taurine enhance anticancer activity of cisplatin in MCF-7 cells.

Keywords

References

  1. Park, B., Choi, K. S., Lee, Y. Y., Jun, J. K. and Seo, H. G. : Cancer screening status in Korea, 2011: results from the Korean National Cancer Screening Survey. Asian Pac. J. Cancer Prev. 4, 1187 (2012).
  2. Downs-Holmes, C. and Silverman, P. : Breast cancer: overview & updates. Nurse Pract. 36, 20 (2011).
  3. Cazzaniga, M. and Bonanni, B. : Breast cancer chemoprevention: old and new approaches. J. Biomed. Biotechnol. 985620, (2012).
  4. Lewis, C. : A review of the use of chemoprotectants in cancer chemotherapy. Drug Saf. 11, 153 (1994). https://doi.org/10.2165/00002018-199411030-00002
  5. Links, M. and Lewis, C. : Chemoprotectants: a review of their clinical pharmacology and therapeutic efficacy. Drugs 57, 293 (1999). https://doi.org/10.2165/00003495-199957030-00003
  6. Cipk, L., Rauko, P., Miadokov, E., Cipkov, I. and Novotn, L. : Effects of flavonoids on cisplatin-induced apoptosis of HL-60 and L1210 leukemia cells. Leuk. Res. 27, 65 (2003). https://doi.org/10.1016/S0145-2126(02)00063-2
  7. Tokalov, S. V., Abramyuk, A. M. and Abolmaali, N. D. : Protection of p53 wild type cells from taxol by genistein in the combined treatment of lung cancer. Nutr. Cancer 62, 795 (2010). https://doi.org/10.1080/01635581003605912
  8. Xu, Y., Xin, Y., Diao, Y., Lu, C., Fu, J., Luo, L. and Yin, Z. : Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PLoS. One. 6, e29169 (2011). https://doi.org/10.1371/journal.pone.0029169
  9. Huxtable, R. J. : Physiological actions of taurine. Physiol. Rev. 72, 101 (1992). https://doi.org/10.1152/physrev.1992.72.1.101
  10. Loureno, R. and Camilo, M. E. : Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr. Hosp. 17, 262 (2002).
  11. Ripps, H. and Shen, W. : Review: taurine: a "very essential" amino acid. Mol. Vis. 18, 2673 (2012).
  12. Chen, X. C., Pan, Z. L., Liu, D. S. and Han, X. : Effect of taurine on human fetal neuron cells: proliferation and differentiation. Adv. Exp. Med. Biol. 442, 397 (1998). https://doi.org/10.1007/978-1-4899-0117-0_49
  13. Hernndez-Bentez, R., Pasantes-Morales, H., Saldaa, I. T. and Ramos-Mandujano, G. : Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J. Neurosci. Res. 88, 1673 (2010).
  14. Shivaraj, M. C., Marcy, G., Low, G., Ryu, J. R., Zhao, X., Rosales, F. J. and Goh, E. L. : Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS. One. 7, e42935 (2012). https://doi.org/10.1371/journal.pone.0042935
  15. Saad, S. Y. and Al-Rikabi, A. C. : Protection effects of Taurine supplementation against cisplatin-induced nephrotoxicity in rats. Chemotherapy 48, 42 (2002). https://doi.org/10.1159/000048587
  16. Ito, T., Muraoka, S., Takahashi, K., Fujio, Y., Schaffer, S. W. and Azuma, J. : Beneficial effect of taurine treatment against doxorubicin-induced cardiotoxicity in mice. Adv. Exp. Med. Biol. 643, 65 (2009). https://doi.org/10.1007/978-0-387-75681-3_7
  17. Das, J., Ghosh, J., Manna, P. and Sil, P. C. : Taurine protects rat testes against doxorubicin-induced oxidative stress as well as p53, Fas and caspase 12-mediated apoptosis. Amino Acids 42, 1839 (2012). https://doi.org/10.1007/s00726-011-0904-4
  18. Das, J., Ghosh, J., Manna, P. and Sil, P. C. : Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38- JNK. Biochem. Pharmacol. 81, 891 (2011). https://doi.org/10.1016/j.bcp.2011.01.008
  19. Sadzuka, Y., Matsuura, M. and Sonobe, T. : The effect of taurine, a novel biochemical modulator, on the antitumor activity of doxorubicin. Biol. Pharm. Bull. 32, 1584 (2009). https://doi.org/10.1248/bpb.32.1584
  20. Kim, T. and Kim, A. K. : Taurine enhances anticancer activity of Cisplatin in human cervical cancer cells. Adv. Exp. Med. Biol. 776, 189 (2013). https://doi.org/10.1007/978-1-4614-6093-0_19
  21. Hernndez-Bentez, R., Ramos-Mandujano, G. and Pasantes- Morales, H. : Taurine stimulates proliferation and promotes neurogenesis of mouse adult cultured neural stem/progenitor cells. Stem Cell Res. 9, 24 (2012). https://doi.org/10.1016/j.scr.2012.02.004
  22. Serova, M., Calvo, F., Lokiec, F., Koeppel, F., Poindessous, V., Larsen, A. K., Laar, E. S., Waters, S. J., Cvitkovic, E. and Raymond, E. : Characterizations of irofulven cytotoxicity in combination with cisplatin and oxaliplatin in human colon, breast, and ovarian cancer cells. Cancer Chemother. Pharmacol. 57, 491 (2006). https://doi.org/10.1007/s00280-005-0063-y
  23. Nonaka, M., Itamochi, H., Kawaguchi, W., Kudoh, A., Sato, S., Uegaki, K., Naniwa, J., Sato, S., Shimada, M., Oishi, T., Terakawa, N., Kigawa, J. and Harada, T. : Activation of the mitogen-activated protein kinase kinase/extracellular signalregulated kinase pathway overcomes cisplatin resistance in ovarian carcinoma cells. Int. J. Gynecol. Cancer 22, 922 (2012). https://doi.org/10.1097/IGC.0b013e31824f0b13
  24. White, B. C. and Sullivan, J. M. : Apoptosis. Acad. Emerg. Med. 5, 1019 (1998). https://doi.org/10.1111/j.1553-2712.1998.tb02785.x
  25. Johnstone, R. W., Ruefli, A. A. and Lowe, S. W. : Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153 (2002). https://doi.org/10.1016/S0092-8674(02)00625-6
  26. Bremer, E., van Dam, G., Kroesen, B. J., de Leij, L. and Helfrich, W. : Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends. Mol. Med. 12, 382 (2006). https://doi.org/10.1016/j.molmed.2006.06.002
  27. Kapuscinski, J. : DAPI: a DNA-specific fluorescent probe. Biotech. Histochem. 70, 220 (1995). https://doi.org/10.3109/10520299509108199
  28. Hong, S. J., Dawson, T. M. and Dawson, V. L. : Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends. Pharmacol. Sci. 25, 259 (2004). https://doi.org/10.1016/j.tips.2004.03.005
  29. Maclaine, N. J. and Hupp, T. R. : The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway. Aging (Albany NY) 1, 490 (2009).
  30. El-Deiry, W. S. : The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22, 7486 (2003). https://doi.org/10.1038/sj.onc.1206949
  31. Fan, T. J., Han, L. H., Cong, R. S. and Liang, J. : Caspase family proteases and apoptosis. Acta. Biochim. Biophys. Sin (Shanghai). 37, 719 (2005). https://doi.org/10.1111/j.1745-7270.2005.00108.x
  32. Gottlieb, R. A. : Mitochondria and apoptosis. Biol. Signals Recept. 10, 147 (2001). https://doi.org/10.1159/000046884
  33. Martinou, J. C. and Youle, R. J. : Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92 (2011). https://doi.org/10.1016/j.devcel.2011.06.017