DOI QR코드

DOI QR Code

Correlation Between Lateral Photovoltaic Effect and Conductivity in p-type Silicon Substrates

  • Received : 2013.03.11
  • Accepted : 2013.03.26
  • Published : 2013.06.20

Abstract

The lateral photovoltaic effect (LPE) can be observed in semiconductors by irradiating a light spot position between electrodes on sample's surface. Because lateral photovoltaic voltage (LPV) is sensitively changed by light spot position, a LPE device has been tried as a position-sensitive detector. This study discusses the correlation between LPV and conductivity in p-type silicon and nano-structured Au deposited p-type silicon (nano-Au silicon), respectively. Conductivity measurement of the sample was carried out using the four-wire method to eliminate contact resistance, and conductivity dependence on LPV was simultaneously measured by changing the light irradiation position. The result showed a strong correlation between conductivity and LPV in the p-type silicon sample. The correlation coefficient was 0.87. The correlation coefficient between LPV and conductivity for the nano-Au silicon sample was 0.41.

Keywords

References

  1. Wallmark, J. T. Proc. IRE. 1957, 45, 474. https://doi.org/10.1109/JRPROC.1957.278435
  2. Schottky, W. U. Phys. Z. 1930, 31, 913.
  3. Yu, C.; Wang, H. Sensors 2010, 10, 10155. https://doi.org/10.3390/s101110155
  4. Lu, J.; Wang, H. Opt. Express 2011, 19, 13806. https://doi.org/10.1364/OE.19.013806
  5. Liu, S.; Yu, C. Q.; Wang, H. IEEE Electron Device Lett. 2012, 33, 414. https://doi.org/10.1109/LED.2011.2181325
  6. Liu, W. M.; Zhang, Y.; Ni, G. Opt. Express 2012, 20, 6225. https://doi.org/10.1364/OE.20.006225
  7. Yu, C. Q.; Wang, H.; Xiao, S. Q.; Xia, Y. X. Opt. Express 2009, 17, 21712. https://doi.org/10.1364/OE.17.021712
  8. Yu, C. Q.; Wang, H. Opt. Express 2010, 18, 21777. https://doi.org/10.1364/OE.18.021777
  9. Lan, T.; Liu, S.; Wang, H. Opt. Lett. 2011, 36, 25. https://doi.org/10.1364/OL.36.000025
  10. Lu, J.; Wang, H. Opt. Express 2012, 20, 21552. https://doi.org/10.1364/OE.20.021552
  11. Ge, C.; Jin, K.; Lu, H.; Wang, C.; Zhao, G.; Zhang, L.; Yang, G. Solid State Commun. 2010, 150, 2114. https://doi.org/10.1016/j.ssc.2010.09.016
  12. Bisquert, J.; Zaban, A. Appl. Phys. A 2003, 77, 507. https://doi.org/10.1007/s00339-002-1479-4
  13. Simpkins, B. S.; Yu, E. T.; Chowdhury, U.; Wong, M. M.; Zhu, T. G.; Yoo, D. W.; Dupuis, R. D. J. Appl. Phys. 2004, 95, 6225. https://doi.org/10.1063/1.1713025
  14. Nicewander, W. A.; Rodgers, J. L. The American Statistician. 1988, 42, 59.
  15. Sze, S. M. Semiconductor Devices Physics and Technology, 2nd ed.; Jonh Wiley & Sons: Inc., 2001; p 48.
  16. Zhang, C.; Zhu, P.; Wang, F.; Ping, Y.; Wu, J.; Lin, Q.; Liang, B. Appl. Opt. 2011, 50, G127. https://doi.org/10.1364/AO.50.00G127
  17. Kye, J.; Seo, M.; Kim, S.; Jang, J.-W.; Oh, I.; Hwang, S. ACS Nano, in press.

Cited by

  1. Unconventional but tunable phase transition above the percolation threshold by two-layer conduction in electroless-deposited Au nanofeatures on silicon substrate vol.26, pp.50, 2015, https://doi.org/10.1088/0957-4484/26/50/505202