DOI QR코드

DOI QR Code

Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase

  • Zhang, Yan (School of Civil and Environment Engineering, University of Science and Technology Beijing) ;
  • Lei, Jiandu (Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University)
  • Received : 2013.03.13
  • Accepted : 2013.03.30
  • Published : 2013.06.20

Abstract

Molecularly imprinted microsphere for chloramphenicol (CAP) with high adsorption capacity and excellent selectivity is prepared by aqueous suspension polymerization, in which chloramphenicol is used as template molecule and ethyl acetate as porogen. The CAP-imprinted microspheres are used as high performance liquid chromatography (HPLC) stationary phase and packed into stainless steel column ($150mm{\times}4.6mm$ i.d.) for selective separation of chloramphenicol. HPLC analysis suggests that chloramphenicol can be distinguished from not only its structural analogs but also other broad-spectrum antibiotic such as erythromycin and tetracycline. In addition, the binding experiments of CAP-imprinted microspheres are carried out in ethanol/water (1:4, V:V), the results indicate that the maximum apparent static binding capacity of molecularly imprinted microspheres is up to 66.64 mg $g^{-1}$ according to scatchard model.

Keywords

References

  1. Woodward, K. N. In Watson, D. H., Ed.; Pesticide, Veterinary and Other Residues in Food; Woodward Publisher Limited: Cambridge, 2004; p 176, Chapter 8.
  2. Commission Decision 2003/181/EC of 13 March 2003 amending decision 2002/657/EC as regard the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin, Off. J. Eur. Commun. 2003, L71, p 17.
  3. Ferguson, J.; Young, A. baxter. P.; Kennedy, G.; Elliott, C.; Weigel, S.; Gatermann, R.; Ashwin, H.; Stead, S.; Sharman, M. Anal. Chim. Acta 2005, 529, 109. https://doi.org/10.1016/j.aca.2004.11.042
  4. Impens, S.; Reybroeck, W.; Vercammen, J.; Courtheyn, D.; Ooghe, S.; De Wasch, K.; Smedts, W.; De Brabander, H. Anal. Chim. Acta 2003, 483, 153. https://doi.org/10.1016/S0003-2670(02)01232-1
  5. Posyniak, A.; Zmudzki, J.; Niedzielska, J. Anal. Chim. Acta 2003, 483, 307. https://doi.org/10.1016/S0003-2670(02)01487-3
  6. Shen, H. Y.; Jiang, H. L. Anal. Chim. Acta 2005, 535, 33. https://doi.org/10.1016/j.aca.2004.12.027
  7. Kubala-Drincic, H.; Bazulic, D.; Sapunar-postruznik, J.; Grubelic, M.; Stuhne, G. J. Agric. Food. Chem. 2003, 51, 871. https://doi.org/10.1021/jf025939d
  8. Mottier, P.; Parisod, V.; Gremaud, E.; Guy, P. A.; Stadler, R. H. J. Chromatogr. A 2003, 994, 75. https://doi.org/10.1016/S0021-9673(03)00484-9
  9. Ronning, H. T.; Einarsen, K.; Asp, T. N. J. Chromatogr. A 2006, 1118, 226. https://doi.org/10.1016/j.chroma.2006.03.099
  10. Boyd, B.; Bjork, H.; Billing, J.; Shimelis, O.; Axelsson, S.; Leonora, M.; Yilmaz, E. J. Chromatogr. A 2007, 1174, 63. https://doi.org/10.1016/j.chroma.2007.08.072
  11. Huynh, T. P.; Pietrzyk-Le, A.; Bikram, K. C. C.; Noworyta, K. R.; Sobczak, J. W.; Sharma, P. S.; D'Souza, F.; Kutner, W. Biosen. Bioelectron. 2013, 41, 634. https://doi.org/10.1016/j.bios.2012.09.038
  12. Norrlow, O.; Glad, M.; Mosbach, K. J. Chromatogr. A 1984, 299, 29. https://doi.org/10.1016/S0021-9673(01)97819-7
  13. Hoshino, Y.; Kodama, T.; Okahata, Y.; Shea, K. J. J. Am. Chem. Soc. 2008, 130, 15242. https://doi.org/10.1021/ja8062875
  14. Zhou, C. H.; Wang, T. T.; Liu, J. Q.; Guo, C.; Peng, Y.; Bai, J. L.; Liu, M.; Dong, J. W.; Gao, N.; Ning, B. A.; Gao, Z. X. Analyst. 2012, 137, 4469. https://doi.org/10.1039/c2an35617a
  15. Schirmer, C.; Meisel, H. J. Chromatogr. A 2006, 1132, 325. https://doi.org/10.1016/j.chroma.2006.09.032
  16. Wang, D. X.; Hong, S. P.; Row, K. H. Korean J. Chem. Eng. 2004, 21, 853. https://doi.org/10.1007/BF02705530
  17. Suarez-Rodriguez, J. L.; Diaz-Garcia, M. E. Biosens. Bioelectr. 2001, 16, 955. https://doi.org/10.1016/S0956-5663(01)00243-3
  18. Shi, X. Z.; Wu, A. B.; Zheng, S. L.; Li, R. X.; Zhang, D. B. J. Chromatogr. B 2007, 850, 24. https://doi.org/10.1016/j.jchromb.2006.10.057
  19. Guo, L. Y.; Guan, M.; Zhao, C. D.; Zhang, H. X. Anal. Bioanal. Chem. 2008, 392, 1431. https://doi.org/10.1007/s00216-008-2454-5
  20. Schirmer, C.; Meisel, H. Anal. Bioanal. Chem. 2008, 392, 223. https://doi.org/10.1007/s00216-008-2269-4
  21. Schirmer, C.; Meisel, H. Anal. Bioanal. Chem. 2009, 394, 2249. https://doi.org/10.1007/s00216-009-2898-2
  22. Chaitidou, S.; Kotrotsiou, O.; Kotti, K.; Kammona, O.; Bukhari, M.; Kiparissides, C. Mater. Sci. Eng. B 2008, 152, 55. https://doi.org/10.1016/j.mseb.2008.06.024
  23. Lei, J. D.; Tan, T. W. Biochem. Eng. J. 2002, 11, 175. https://doi.org/10.1016/S1369-703X(02)00022-0
  24. Scathard, G.; Scheiberg, I. I.; Armstrong, S. H. J. Am. Chem. Soc. 1950, 72, 535. https://doi.org/10.1021/ja01157a138

Cited by

  1. Synthesis of Low-Density Heat-Resisting Polystyrene/Graphite Composite Microspheres Used as Water Carrying Fracturing Proppants vol.53, pp.16, 2013, https://doi.org/10.1080/03602559.2014.919648