DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile

  • Received : 2013.03.07
  • Accepted : 2013.03.25
  • Published : 2013.06.20

Abstract

The nucleophilic substitution reactions of Y-aryl ethyl isothiocyanophosphates with substituted X-anilines and deuterated X-anilines were investigated kinetically in acetonitrile at $75.0^{\circ}C$. The free energy relationships with X in the nucleophiles exhibited biphasic concave downwards with a break point at X = H. A stepwise mechanism with rate-limiting bond formation for strongly basic anilines and with rate-limiting bond breaking for weakly basic anilines is proposed based on the negative and positive ${\rho}_{XY}$ values, respectively. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) changed gradually from primary normal with strongly basic anilines, via primary normal and secondary inverse with aniline, to secondary inverse with weakly basic anilines. The primary normal and secondary inverse DKIEs were rationalized by frontside attack involving hydrogen bonded, four-center-type TSf and backside attack involving in-line-type TSb, respectively.

Keywords

References

  1. Lee, I. Chem. Soc. Rev. 1990, 9, 317.
  2. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  3. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  4. Ritchie, C. D. Solute-Solvent Interactions, Coetzee, J. F.; Ritchie, C. D. ed., Marcel Dekker, New York, 1969, Chapter 4.
  5. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45. https://doi.org/10.1002/9780470171837.ch2
  6. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  7. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  8. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  9. Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan, New York, 1992; p 735.
  10. Williams, A. In Concerted Organic and Bio-organic Mechanisms; CRS Press: Boca Raton, 2000; Chapter 7.
  11. Ruff, A.; Csizmadia, I. G. In Organic Reactions Equilibria, Kinetics and Mechanism; Elsevier, Amsterdam, Netherlands, 1994; Chapter 7.
  12. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  13. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995. https://doi.org/10.1021/jo0264269
  14. Oh, H. K.; Lee, J. M.; Lee, H. W.; Lee, I. Int. J. Chem. Kinet. 2004, 36, 434. https://doi.org/10.1002/kin.20000
  15. Oh, H. K.; Park, J. E.; Lee, H. W. Bull. Korean Chem Soc. 2004, 25, 1041. https://doi.org/10.5012/bkcs.2004.25.7.1041
  16. Castro, E. A.; Angel, P. M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571. https://doi.org/10.1021/jo0101252
  17. Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2002, 67, 4494. https://doi.org/10.1021/jo0255532
  18. Castro, E. A.; Aliaga, M.; Campodonico, P.; Santos, J. G. J. Org. Chem. 2002, 67, 8911. https://doi.org/10.1021/jo026390k
  19. Humeres, E.; Debacher, N. A.; Sierra, M. M. D.; Franco, J. D.; Shutz, A. J. Org. Chem. 1998, 63, 1598. https://doi.org/10.1021/jo971869b
  20. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
  21. Barnes, J. A.; Williams, I. H. J. Chem. Soc. Chem. Commun. 1993, 1286.
  22. Lee, I. Chem. Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  23. Marlier, J. F. Acc. Chem. Res. 2001, 34, 283. https://doi.org/10.1021/ar000054d
  24. Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217. https://doi.org/10.1016/S0065-3160(06)41004-2
  25. Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736. https://doi.org/10.1021/ja057491d
  26. Gronert, S.; Fagin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330. https://doi.org/10.1021/ja070093l
  27. Poirier, R. A.; Wang, Y.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037
  28. Yamata, H.; Ando, T.; Nagase, S.; Hanamura, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
  29. Zhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015
  30. Crumpler, T. B.; Yoh, J. H. in Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
  31. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  32. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  33. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  34. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  35. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  36. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1939. https://doi.org/10.5012/bkcs.2011.32.6.1939
  37. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2012, 33, 1879. https://doi.org/10.5012/bkcs.2012.33.6.1879
  38. Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g

Cited by

  1. Kinetics and Mechanism of Anilinolyses of Aryl Methyl and Aryl Propyl Chlorothiophosphates in Acetonitrile vol.35, pp.9, 2013, https://doi.org/10.5012/bkcs.2014.35.9.2797