DOI QR코드

DOI QR Code

Determination of Thiamine in Pharmaceutical Preparations by Reverse Phase Liquid Chromatography Without Use of Organic Solvent

  • Suh, Joon Hyuk (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Kim, Junghyun (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Jung, Juhee (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Kim, Kyunghyun (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Lee, Seul Gi (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Cho, Hyun-Deok (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Jung, Yura (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University) ;
  • Han, Sang Beom (Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University)
  • Received : 2013.01.28
  • Accepted : 2013.03.16
  • Published : 2013.06.20

Abstract

A novel green aqueous mobile phase modified with room temperature ionic liquids (RTILs) was employed in the absence of volatile organic solvents or ion-pairing reagents to analyze thiamine, a very polar compound, by reverse phase high performance liquid chromatography (RP-HPLC). Due to its strongly hydrophilic nature, thiamine was eluted near the column dead time ($t_0$) using a mobile phase without adding RTILs or ion-pairing reagents, even if a 100% aqueous mobile phase, which has weak elution power under reverse phase conditions, was used. Thus, 1-ethyl-3-methyl-imidazolium hexafluorophosphate ([EMIM][$PF_6$]), which has the strongest chaotropic effect, was selected as a mobile phase additive to improve retention and avoid baseline disturbances at $t_0$. Various mobile phase parameters such as cation moiety, chaotropic anion moiety, pH and concentration of RTILs were optimized to determine thiamine at the proper retention time. Method validation was performed to assess linearity, intra- and inter-day accuracy and precision, recovery and repeatability; all results were found to be satisfactory. The developed method was also compared to the current official United States Pharmacopoeia (USP) and Korean Pharmacopoeia (KP) methods using an organic mobile phase containing an ionpairing reagent by means of evaluating various chromatographic parameters such as the capacity factor, theoretical plate number, peak asymmetry and tailing factor. The results indicated that the proposed method exhibited better efficiency of thiamine analysis than the official methods, and it was successfully applied to quantify thiamine in pharmaceutical preparations.

Keywords

References

  1. Johnson, L. R.; Gubler, C. J. Biochim. Biophys. Acta 1968, 156, 85. https://doi.org/10.1016/0304-4165(68)90107-4
  2. Gibson, S. Principles of Nutritional Assessment; Oxford University Press: New York, 1990.
  3. Lonsdale, D. Evid. Based Complement Alternat. Med. 2006, 3, 49. https://doi.org/10.1093/ecam/nek009
  4. Bettendorff, L. J. Chromatogr. 1991, 556, 397.
  5. Bettendorff, L.; Peeters, M.; Wins, P.; Schoffeniels, E. J. Neurochem. 1993, 60, 423. https://doi.org/10.1111/j.1471-4159.1993.tb03168.x
  6. Butterworth, R. F. Nutr. Res. Rev. 2003, 16, 277. https://doi.org/10.1079/NRR200367
  7. Tolonen, M. Vitamins and Minerals in Health and Nutrition; Woodheas Publishing: New York, 1990.
  8. Lynch, P. L. M.; Young, I. S. J. Chromatogr. A 2000, 881, 267. https://doi.org/10.1016/S0021-9673(00)00089-3
  9. Fayol, V. Meth. Enzymol. 1997, 279, 57. https://doi.org/10.1016/S0076-6879(97)79009-8
  10. Mauro, D. J.; Wetzel, D. L. J. Chromatogr. 1984, 299, 281. https://doi.org/10.1016/S0021-9673(01)97842-2
  11. Tang, X.; Cronin, D. A.; Brunton, N. P. J. Food Compos. Anal.2006, 19, 831. https://doi.org/10.1016/j.jfca.2005.12.013
  12. Ollilainen, V.; Finglas, P. M.; Van Den Berg, H.; De Froidmont- Gortz, I. J. Agric. Food. Chem. 2001, 49, 315. https://doi.org/10.1021/jf9912497
  13. Chase, G. W.; Landen, W. O., Jr.; Soliman, A. G.; Eitenmiller, R. R. J. AOAC Int. 1993, 76, 1276.
  14. Jedli ka, A.; Klimes, J. Chem. Pap. 2005, 59, 202.
  15. Zafra-Gomez, A.; Garballo, A.; Morales, J. C.; Garcia-Ayuso, L. E. J. Agric. Food. Chem. 2006, 54, 4531. https://doi.org/10.1021/jf060346e
  16. Arella, F.; Lahely, S.; Bourguignon, J. B.; Hasselmann, C. Food Chem. 1996, 56, 81. https://doi.org/10.1016/0308-8146(95)00149-2
  17. Amin, M.; Reusch, J. Analyst 1987, 112, 989. https://doi.org/10.1039/an9871200989
  18. The United Stated Pharmacopeia, 33th rev.; United States Pharmacopeial Conevention Inc.: Rockville, MD, 2011.
  19. The Korean Pharmacopoeia, 9th ed.; Yakup Daily: Seoul, 2007.
  20. Snyder, L. R.; Kirkland, J. J.; Glajch, L. J. Practical HPLC Method Development, 2nd ed.; Wiley-Interscience Publication: New York,1997.
  21. Suh, J. H.; Yang, D. H.; Lee, B. K.; Eom, H. Y.; Kim, U. Y.; Kim, J. H.; Lee, H. Y.; Han, S. B. Bull. Korean Chem. Soc. 2011, 32, 2648. https://doi.org/10.5012/bkcs.2011.32.8.2648
  22. Gratacos-Cubarsi, M.; Sarraga, C.; Clariana, M.; Garcia-Regueiro, J. A.; Castellari, M. Meat Sci. 2011, 87, 234. https://doi.org/10.1016/j.meatsci.2010.10.017
  23. Tang, F.; Tao, L.; Luo, X.; Ding, L.; Guo, M.; Nie, L.; Yao, S. J. Chromatogr. A 2006, 1125, 182. https://doi.org/10.1016/j.chroma.2006.05.049
  24. Chen, Z.; Chen, Y. Anal. Lett. 2010, 43, 393. https://doi.org/10.1080/00032710903402341
  25. Pandey, S. Anal. Chim. Acta 2006, 556, 38. https://doi.org/10.1016/j.aca.2005.06.038
  26. Berthod, A.; Ruiz-Angel, M. J.; Carda-Broch, S. J. Chromatogr. A 2008, 1184, 6. https://doi.org/10.1016/j.chroma.2007.11.109
  27. Berthod, A.; Ruiz-Angel, M. J.; Huguet, S. Anal. Chem. 2005, 77,4071. https://doi.org/10.1021/ac050304+
  28. Cecchi, T.; Passamonti, P. J. Chromatogr. A 2009, 1216, 1789. https://doi.org/10.1016/j.chroma.2008.10.031
  29. He, L.; Zhang, W.; Zhao, L.; Liu, X.; Jiang, S. J. Chromatogr. A 2003, 1007, 39. https://doi.org/10.1016/S0021-9673(03)00987-7
  30. Zhang, W.; He, L.; Gu, Y.; Liu, X.; Jiang, S. Anal. Lett. 2003, 36,827. https://doi.org/10.1081/AL-120018802
  31. Xiaohua, X.; Liang, Z.; Xia, L.; Shengxiang, J. Anal. Chim. Acta 2004, 519, 207. https://doi.org/10.1016/j.aca.2004.06.038
  32. Yang, Z. J. Biotechnol. 2009, 144, 12. https://doi.org/10.1016/j.jbiotec.2009.04.011
  33. Validation of Analytical Procedures: Text and Methodology; ICH Harmonised Tripartite Guideline: Q2(R1), 2005.

Cited by

  1. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051065
  2. Determination of urazamide in pharmaceutical preparation with room temperature ionic liquid vol.40, pp.3, 2017, https://doi.org/10.1007/s12272-017-0895-0
  3. Detection of vitamin b1 (thiamine) using modified carbon paste electrodes with polypyrrole vol.58, pp.None, 2013, https://doi.org/10.1088/1755-1315/58/1/012050
  4. Development and Validation of an HPLC Method Using a Less Hazardous Mobile Phase for the Determination of some β‐Lactams vol.40, pp.9, 2013, https://doi.org/10.1002/bkcs.11836
  5. Alternative chromatographic method for the assay test of terbutaline and salbutamol using ionic liquid assisted aqueous mobile phase vol.33, pp.4, 2013, https://doi.org/10.5806/ast.2020.33.4.169