DOI QR코드

DOI QR Code

Magnetization of Magnetite Ferrofluid Studied by Using a Magnetic Balance

  • Jin, Daeseong (Department of Chemistry, Chungnam National University) ;
  • Kim, Hackjin (Department of Chemistry, Chungnam National University)
  • Received : 2013.02.07
  • Accepted : 2013.03.15
  • Published : 2013.06.20

Abstract

Magnetic properties of magnetite ferrofluid are studied by measuring magnetic weights under different magnetic fields with a conventional electronic balance. Magnetite nanoparticles of 11 nm diameter are synthesized to make the ferrofluid. Magnetization calculated from the magnetic weight reveals the hysteresis and deviates from the Langevin function at high magnetic fields. Magnetic weight shifts instantaneously with magnetic field change by Neel and Brown mechanism. When high magnetic field is applied to the sample, slower change of magnetic weight is accompanied with the instantaneous shift via agglomeration of nanoparticles. The slow change of the magnetic weight shows the stretched exponential kinetics. The temporal change of the magnetic weight and the magnetization of the ferrofluid at high magnetic fields suggest that the superparamagnetic sample turns into superspin glass by strong magnetic interparticle interactions.

Keywords

References

  1. Lu, A.-H.; Salabas, E. L.; Schüth, F. Angew. Chem. Int. Ed. 2007, 46, 1222. https://doi.org/10.1002/anie.200602866
  2. Yoo, D.; Lee, J.-H.; Shin, T.-H.; Cheon, J. Acc. Chem. Res. 2011, 44, 863. https://doi.org/10.1021/ar200085c
  3. Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T. Acc. Chem. Res. 2011, 44, 893. https://doi.org/10.1021/ar2000259
  4. Gatteschi, D.; Fittipaldi, M.; Sangregorio, C.; Sorace, L. Angew. Chem. Int. Ed. 2012, 51, 4792. https://doi.org/10.1002/anie.201105428
  5. Colombo, M.; Carregal-Romero, S.; Casula, M. F.; Gutierrez, L.; Morales, M. P.; Bohm, I. B.; Heverhagen, J. T.; Prosperi, D.; Parak, W. J. Chem. Soc. Rev. 2012, 41, 4306. https://doi.org/10.1039/c2cs15337h
  6. Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Chem. Rev. 2012, 112, 5818. https://doi.org/10.1021/cr300068p
  7. Barbeta, V. B.; Jardim, R. F.; Kiyohara, P. K.; Effenberger, F. B.; Rossi, L. M. J. Appl. Phys. 2010, 107, 073913. https://doi.org/10.1063/1.3311611
  8. Sarkar, D.; Mandal, M. J. Phys. Chem. C 2012, 116, 3227. https://doi.org/10.1021/jp208020z
  9. Chovnik, O.; Balgley, R.; Goldman, J. R.; Klajn, R. J. Am. Chem. Soc. 2012, 134, 19564. https://doi.org/10.1021/ja309633v
  10. Rovers, S. A.; Hoogenboom, R.; Kemmere, M. F.; Keurentjes, J. T. F. J. Phys. Chem. C 2008, 112, 15643. https://doi.org/10.1021/jp805631r
  11. Bedanta, S.; Kleemann, W. J. Phys. D: Appl. Phys. 2009, 42, 013001. https://doi.org/10.1088/0022-3727/42/1/013001
  12. Castillo, V. L. C.-D. del; Rinaldi, C. IEEE Trans. Magn. 2010, 46, 852. https://doi.org/10.1109/TMAG.2009.2032240
  13. Morales, M. B.; Phan, M. H.; Pal, S.; Frey, N. A.; Srikanth, H. J. Appl. Phys. 2009, 105, 07B511. https://doi.org/10.1063/1.3068461
  14. Fortin, J.-P.; Wilhelm, C.; Servais, J. Menager, C.; Bacri, J.-C.; Gazeau, F. J. Am. Chem. Soc. 2007, 129, 2628. https://doi.org/10.1021/ja067457e
  15. Costo, R.; Bello, V.; Robic, C.; Port, M.; Marco, J. F.; Morales, M. P.; Veintemillas-Verdaguer, S. Langmuir 2012, 28, 178. https://doi.org/10.1021/la203428z
  16. Jonssona, P. E.; Garc a-Palaciosb, J. L.; Hansenc, M. F.; Nordblad, P. J. Mol. Liq. 2004, 114, 131. https://doi.org/10.1016/j.molliq.2004.02.010
  17. Poddar, P.; Telem-Shafir, T.; Fried, T.; Markovich, G. Phys. Rev. B 2002, 66, 060403. https://doi.org/10.1103/PhysRevB.66.060403
  18. Lee, K. R.; Kim, S.; Kang, D. H.; Lee, J. I.; Lee, Y. J.; Kim, W. S.; Cho, D.-H.; Lim, H. B.; Kim, J.; Hur, N. H. Chem. Mater. 2008, 20, 6738. https://doi.org/10.1021/cm802335r
  19. Vejpravova, J. P.; Tyrpekl, V.; Danis, S.; Niznansky, D.; Sechovsky, V. J. Magn. Magn. Mater. 2010, 322, 1872. https://doi.org/10.1016/j.jmmm.2009.12.044
  20. Telem-Shafir, T.; Markovich, G. J. Chem. Phys. 2005, 123, 204715. https://doi.org/10.1063/1.2126663
  21. Petracica, O.; Chena, X.; Bedanta, S.; Kleemanna, W.; Sahoob, S.; Cardosoc, S.; Freitas, P. P. J. Magn. Magn. Mater. 2006, 300, 192. https://doi.org/10.1016/j.jmmm.2005.10.061
  22. Ulrich, M.; Garc a-Otero, J.; Rivas, J.; Bunde, A. Phys. Rev. B 2003, 67, 024416. https://doi.org/10.1103/PhysRevB.67.024416
  23. Qi, H.; Chen, Q.; Wang, M.; Wen, M.; Xiong, J. J. Phys. Chem. C 2009, 113, 17301. https://doi.org/10.1021/jp904928s
  24. Jun, B.-H.; Kim, G.; Baek, J.; Kang, H.; Kim, T.; Hyeon, T.; Jeong, D. H.; Lee, Y.-S. Phys. Chem. Chem. Phys. 2011, 13, 7298. https://doi.org/10.1039/c0cp02055a
  25. Mohammadi, Z.; Cole, A.; Berkland, C. J. J. Phys. Chem. C 2009, 113, 7652. https://doi.org/10.1021/jp901036b
  26. Bian, P.; McCarthy, T. J. Langmuir 2010, 26, 6145. https://doi.org/10.1021/la1006617
  27. Howes, P.; Green, M.; Bowers, A.; Parker, D.; Varma, G.; Kallumadil, M.; Hughes, M.; Warley, A.; Brain, A.; Botnar, R. J. Am. Chem. Soc. 2010, 132, 9833. https://doi.org/10.1021/ja1031634
  28. Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L.; Shipley, H. J.; Kan, A.; Tomson, M.; Natelson, D.; Colvin, V. L. Science 2006, 314, 964. https://doi.org/10.1126/science.1131475
  29. Kang, Y.; Risbud, S.; Rabolt, J. F.; Stroeve, P. Chem. Mater. 1996, 8, 2209. https://doi.org/10.1021/cm960157j
  30. Berger, P.; Adelman, N. B.; Beckman, K. J.; Campbell, D. J.; Ellis, A. B.; Lisensky, G. C. J. Chem. Edu. 1999, 76, 943. https://doi.org/10.1021/ed076p943
  31. Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204. https://doi.org/10.1021/ja026501x
  32. Lee, Y.; Lee, J.; Bae, C. J.; Park, J.-G.; Noh, H.-J.; Park, J.-H.; Hyeon, T. Adv. Funct. Mater. 2005, 15, 503. https://doi.org/10.1002/adfm.200400187
  33. Hagermann, A.; Schnepp, E. Rev. Sci. Inst. 2002, 73, 2655. https://doi.org/10.1063/1.1487897
  34. Dormann, J. L.; Fiorani, E.; Tronc, E. Adv. Chem. Phys. 1997, 98, 283. https://doi.org/10.1002/9780470141571.ch4
  35. Wiekhorst, F.; Shevchenko, E.; Weller, H.; Kotzler, J. Phys. Rev. B 2003, 67, 224416. https://doi.org/10.1103/PhysRevB.67.224416
  36. Guardia, P.; Batlle-Brugal, B.; Roca, A. G.; Iglesias, O.; Morales, M. P.; Serna, C. J.; Labarta, A.; Batlle, X. J. Magn. Magn. Mater. 2007, 316, e756. https://doi.org/10.1016/j.jmmm.2007.03.085
  37. Masatsugu, S.; Fullem, S. I.; Suzuki, I. S. Phys. Rev. B 2009, 79, 024418. https://doi.org/10.1103/PhysRevB.79.024418
  38. Roca, A. G.; Morales, M. P.; O'Grady, K.; Serna, C. J. Nanotech. 2006, 17, 2783. https://doi.org/10.1088/0957-4484/17/11/010
  39. Suzuki, M. Prog. Theor. Phys. 1977, 58, 1151. https://doi.org/10.1143/PTP.58.1151
  40. Sahoo, S.; Petracic, O.; Binek, Ch.; Kleemann, W.; Sousa, J. B.; Cardoso, S.; Fretas, P. P. Phys. Rev. B 2002, 65, 134406. https://doi.org/10.1103/PhysRevB.65.134406
  41. Lindsey, C. P.; Patterson, G. D. J. Chem. Phys. 1980, 73, 3348. https://doi.org/10.1063/1.440530
  42. Bendler, J. T.; Shlesinger, M. F. Macromolecules 1985, 18, 591. https://doi.org/10.1021/ma00145a052
  43. Klafter, J.; Shlesinger, M. F. Proc. Natl. Acad. Sci. 1986, 83, 848. https://doi.org/10.1073/pnas.83.4.848
  44. Potuzak, M.; Welch, R. C.; Mauro, J. C. J. Chem. Phys. 2011, 135, 214502. https://doi.org/10.1063/1.3664744
  45. Cuevas, G. D. L.; Faraudo, J.; Camacho, J. J. Phys. Chem. C 2008, 112, 945. https://doi.org/10.1021/jp0755286
  46. Sahoo, S.; Petracic, O.; Kleemann, W. Phys. Rev. B 2003, 67, 214422. https://doi.org/10.1103/PhysRevB.67.214422

Cited by

  1. Stretched Exponential Change of Magnetic Weight of Magnetite Ferrofluid: Distribution of Energy Barrier for Agglomeration of Nanoparticles vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10056
  2. Effects of Sample Container Morphology on Agglomeration Dynamics of Magnetite Nanoparticles under Magnetic Field vol.37, pp.12, 2016, https://doi.org/10.1002/bkcs.11009
  3. Kinetic and Thermodynamic Effects on the Agglomeration of Magnetite Nanoparticles by Magnetic Field vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10787
  4. A novel approach for estimating the magnetization curve of magnetic fluids vol.34, pp.6, 2017, https://doi.org/10.1108/EC-05-2016-0161
  5. Magnetic properties of undecane-based magnetic fluids vol.62, pp.4, 2017, https://doi.org/10.1134/S1063784217040028
  6. Agglomeration Dynamics of Magnetite Nanoparticles at Low Magnetic Field Gradient vol.39, pp.6, 2018, https://doi.org/10.1002/bkcs.11463
  7. Concentration and Magnetic Field Effects on Thermal Fluctuation of Magnetic Weight of Magnetite Nanoparticles During Agglomeration Under Magnetic Field vol.41, pp.6, 2013, https://doi.org/10.1002/bkcs.12041
  8. Analysis of Agglomeration Kinetics of Magnetic Nanoparticles With Boltzmann Distribution of Energy Barrier vol.42, pp.7, 2013, https://doi.org/10.1002/bkcs.12302
  9. Role of Gallic Acid in the Synthesis of Carbon-Encapsulated Iron Nanoparticles by Hydrothermal Carbonization: Selecting Iron Oxide Composition vol.6, pp.44, 2013, https://doi.org/10.1021/acsomega.1c03692
  10. Mittag-Leffler Function as an Approximant to the Concentrated Ferrofluid’s Magnetization Curve vol.5, pp.4, 2013, https://doi.org/10.3390/fractalfract5040147