References
- Lu, A.-H.; Salabas, E. L.; Schüth, F. Angew. Chem. Int. Ed. 2007, 46, 1222. https://doi.org/10.1002/anie.200602866
- Yoo, D.; Lee, J.-H.; Shin, T.-H.; Cheon, J. Acc. Chem. Res. 2011, 44, 863. https://doi.org/10.1021/ar200085c
- Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T. Acc. Chem. Res. 2011, 44, 893. https://doi.org/10.1021/ar2000259
- Gatteschi, D.; Fittipaldi, M.; Sangregorio, C.; Sorace, L. Angew. Chem. Int. Ed. 2012, 51, 4792. https://doi.org/10.1002/anie.201105428
- Colombo, M.; Carregal-Romero, S.; Casula, M. F.; Gutierrez, L.; Morales, M. P.; Bohm, I. B.; Heverhagen, J. T.; Prosperi, D.; Parak, W. J. Chem. Soc. Rev. 2012, 41, 4306. https://doi.org/10.1039/c2cs15337h
- Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Chem. Rev. 2012, 112, 5818. https://doi.org/10.1021/cr300068p
- Barbeta, V. B.; Jardim, R. F.; Kiyohara, P. K.; Effenberger, F. B.; Rossi, L. M. J. Appl. Phys. 2010, 107, 073913. https://doi.org/10.1063/1.3311611
- Sarkar, D.; Mandal, M. J. Phys. Chem. C 2012, 116, 3227. https://doi.org/10.1021/jp208020z
- Chovnik, O.; Balgley, R.; Goldman, J. R.; Klajn, R. J. Am. Chem. Soc. 2012, 134, 19564. https://doi.org/10.1021/ja309633v
- Rovers, S. A.; Hoogenboom, R.; Kemmere, M. F.; Keurentjes, J. T. F. J. Phys. Chem. C 2008, 112, 15643. https://doi.org/10.1021/jp805631r
- Bedanta, S.; Kleemann, W. J. Phys. D: Appl. Phys. 2009, 42, 013001. https://doi.org/10.1088/0022-3727/42/1/013001
- Castillo, V. L. C.-D. del; Rinaldi, C. IEEE Trans. Magn. 2010, 46, 852. https://doi.org/10.1109/TMAG.2009.2032240
- Morales, M. B.; Phan, M. H.; Pal, S.; Frey, N. A.; Srikanth, H. J. Appl. Phys. 2009, 105, 07B511. https://doi.org/10.1063/1.3068461
- Fortin, J.-P.; Wilhelm, C.; Servais, J. Menager, C.; Bacri, J.-C.; Gazeau, F. J. Am. Chem. Soc. 2007, 129, 2628. https://doi.org/10.1021/ja067457e
- Costo, R.; Bello, V.; Robic, C.; Port, M.; Marco, J. F.; Morales, M. P.; Veintemillas-Verdaguer, S. Langmuir 2012, 28, 178. https://doi.org/10.1021/la203428z
- Jonssona, P. E.; Garc a-Palaciosb, J. L.; Hansenc, M. F.; Nordblad, P. J. Mol. Liq. 2004, 114, 131. https://doi.org/10.1016/j.molliq.2004.02.010
- Poddar, P.; Telem-Shafir, T.; Fried, T.; Markovich, G. Phys. Rev. B 2002, 66, 060403. https://doi.org/10.1103/PhysRevB.66.060403
- Lee, K. R.; Kim, S.; Kang, D. H.; Lee, J. I.; Lee, Y. J.; Kim, W. S.; Cho, D.-H.; Lim, H. B.; Kim, J.; Hur, N. H. Chem. Mater. 2008, 20, 6738. https://doi.org/10.1021/cm802335r
- Vejpravova, J. P.; Tyrpekl, V.; Danis, S.; Niznansky, D.; Sechovsky, V. J. Magn. Magn. Mater. 2010, 322, 1872. https://doi.org/10.1016/j.jmmm.2009.12.044
- Telem-Shafir, T.; Markovich, G. J. Chem. Phys. 2005, 123, 204715. https://doi.org/10.1063/1.2126663
- Petracica, O.; Chena, X.; Bedanta, S.; Kleemanna, W.; Sahoob, S.; Cardosoc, S.; Freitas, P. P. J. Magn. Magn. Mater. 2006, 300, 192. https://doi.org/10.1016/j.jmmm.2005.10.061
- Ulrich, M.; Garc a-Otero, J.; Rivas, J.; Bunde, A. Phys. Rev. B 2003, 67, 024416. https://doi.org/10.1103/PhysRevB.67.024416
- Qi, H.; Chen, Q.; Wang, M.; Wen, M.; Xiong, J. J. Phys. Chem. C 2009, 113, 17301. https://doi.org/10.1021/jp904928s
- Jun, B.-H.; Kim, G.; Baek, J.; Kang, H.; Kim, T.; Hyeon, T.; Jeong, D. H.; Lee, Y.-S. Phys. Chem. Chem. Phys. 2011, 13, 7298. https://doi.org/10.1039/c0cp02055a
- Mohammadi, Z.; Cole, A.; Berkland, C. J. J. Phys. Chem. C 2009, 113, 7652. https://doi.org/10.1021/jp901036b
- Bian, P.; McCarthy, T. J. Langmuir 2010, 26, 6145. https://doi.org/10.1021/la1006617
- Howes, P.; Green, M.; Bowers, A.; Parker, D.; Varma, G.; Kallumadil, M.; Hughes, M.; Warley, A.; Brain, A.; Botnar, R. J. Am. Chem. Soc. 2010, 132, 9833. https://doi.org/10.1021/ja1031634
- Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L.; Shipley, H. J.; Kan, A.; Tomson, M.; Natelson, D.; Colvin, V. L. Science 2006, 314, 964. https://doi.org/10.1126/science.1131475
- Kang, Y.; Risbud, S.; Rabolt, J. F.; Stroeve, P. Chem. Mater. 1996, 8, 2209. https://doi.org/10.1021/cm960157j
- Berger, P.; Adelman, N. B.; Beckman, K. J.; Campbell, D. J.; Ellis, A. B.; Lisensky, G. C. J. Chem. Edu. 1999, 76, 943. https://doi.org/10.1021/ed076p943
- Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204. https://doi.org/10.1021/ja026501x
- Lee, Y.; Lee, J.; Bae, C. J.; Park, J.-G.; Noh, H.-J.; Park, J.-H.; Hyeon, T. Adv. Funct. Mater. 2005, 15, 503. https://doi.org/10.1002/adfm.200400187
- Hagermann, A.; Schnepp, E. Rev. Sci. Inst. 2002, 73, 2655. https://doi.org/10.1063/1.1487897
- Dormann, J. L.; Fiorani, E.; Tronc, E. Adv. Chem. Phys. 1997, 98, 283. https://doi.org/10.1002/9780470141571.ch4
- Wiekhorst, F.; Shevchenko, E.; Weller, H.; Kotzler, J. Phys. Rev. B 2003, 67, 224416. https://doi.org/10.1103/PhysRevB.67.224416
- Guardia, P.; Batlle-Brugal, B.; Roca, A. G.; Iglesias, O.; Morales, M. P.; Serna, C. J.; Labarta, A.; Batlle, X. J. Magn. Magn. Mater. 2007, 316, e756. https://doi.org/10.1016/j.jmmm.2007.03.085
- Masatsugu, S.; Fullem, S. I.; Suzuki, I. S. Phys. Rev. B 2009, 79, 024418. https://doi.org/10.1103/PhysRevB.79.024418
- Roca, A. G.; Morales, M. P.; O'Grady, K.; Serna, C. J. Nanotech. 2006, 17, 2783. https://doi.org/10.1088/0957-4484/17/11/010
- Suzuki, M. Prog. Theor. Phys. 1977, 58, 1151. https://doi.org/10.1143/PTP.58.1151
- Sahoo, S.; Petracic, O.; Binek, Ch.; Kleemann, W.; Sousa, J. B.; Cardoso, S.; Fretas, P. P. Phys. Rev. B 2002, 65, 134406. https://doi.org/10.1103/PhysRevB.65.134406
- Lindsey, C. P.; Patterson, G. D. J. Chem. Phys. 1980, 73, 3348. https://doi.org/10.1063/1.440530
- Bendler, J. T.; Shlesinger, M. F. Macromolecules 1985, 18, 591. https://doi.org/10.1021/ma00145a052
- Klafter, J.; Shlesinger, M. F. Proc. Natl. Acad. Sci. 1986, 83, 848. https://doi.org/10.1073/pnas.83.4.848
- Potuzak, M.; Welch, R. C.; Mauro, J. C. J. Chem. Phys. 2011, 135, 214502. https://doi.org/10.1063/1.3664744
- Cuevas, G. D. L.; Faraudo, J.; Camacho, J. J. Phys. Chem. C 2008, 112, 945. https://doi.org/10.1021/jp0755286
- Sahoo, S.; Petracic, O.; Kleemann, W. Phys. Rev. B 2003, 67, 214422. https://doi.org/10.1103/PhysRevB.67.214422
Cited by
- Stretched Exponential Change of Magnetic Weight of Magnetite Ferrofluid: Distribution of Energy Barrier for Agglomeration of Nanoparticles vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10056
- Effects of Sample Container Morphology on Agglomeration Dynamics of Magnetite Nanoparticles under Magnetic Field vol.37, pp.12, 2016, https://doi.org/10.1002/bkcs.11009
- Kinetic and Thermodynamic Effects on the Agglomeration of Magnetite Nanoparticles by Magnetic Field vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10787
- A novel approach for estimating the magnetization curve of magnetic fluids vol.34, pp.6, 2017, https://doi.org/10.1108/EC-05-2016-0161
- Magnetic properties of undecane-based magnetic fluids vol.62, pp.4, 2017, https://doi.org/10.1134/S1063784217040028
- Agglomeration Dynamics of Magnetite Nanoparticles at Low Magnetic Field Gradient vol.39, pp.6, 2018, https://doi.org/10.1002/bkcs.11463
- Concentration and Magnetic Field Effects on Thermal Fluctuation of Magnetic Weight of Magnetite Nanoparticles During Agglomeration Under Magnetic Field vol.41, pp.6, 2013, https://doi.org/10.1002/bkcs.12041
- Analysis of Agglomeration Kinetics of Magnetic Nanoparticles With Boltzmann Distribution of Energy Barrier vol.42, pp.7, 2013, https://doi.org/10.1002/bkcs.12302
- Role of Gallic Acid in the Synthesis of Carbon-Encapsulated Iron Nanoparticles by Hydrothermal Carbonization: Selecting Iron Oxide Composition vol.6, pp.44, 2013, https://doi.org/10.1021/acsomega.1c03692
- Mittag-Leffler Function as an Approximant to the Concentrated Ferrofluid’s Magnetization Curve vol.5, pp.4, 2013, https://doi.org/10.3390/fractalfract5040147