DOI QR코드

DOI QR Code

Accurate Analysis of Chromium in Foodstuffs by Using Inductively Coupled Plasma Mass Spectrometry with a Collision-Reaction Interface

  • Lee, Seung Ha (Department of Environmental Health, College of Health Sciences, Korea University) ;
  • Kim, Ji Ae (Department of Environmental Health, College of Health Sciences, Korea University) ;
  • Choi, Seung Hyeon (Department of Environmental Health, College of Health Sciences, Korea University) ;
  • Kim, Young Soon (Department of Food and Nutrition, College of Health Sciences, Korea University) ;
  • Choi, Dal Woong (Department of Environmental Health, College of Health Sciences, Korea University)
  • Received : 2013.01.02
  • Accepted : 2013.03.13
  • Published : 2013.06.20

Abstract

Food is a common source of chromium (Cr) exposure. However, it is difficult to analyze Cr in complex food matrices by using inductively coupled plasma mass spectrometry (ICP-MS) because the major isotope, $^{52}Cr$, is masked by interference generated by the sample matrix and the plasma gas. Among the systems available to minimize interference, the recently developed collision-reaction interface (CRI) has a different structure relative to that of other systems (e.g., collision cell technology, octopole reaction system, and dynamic reaction cell) that were designed as a chamber between the skimmer cone and quadrupole. The CRI system introduces collision or reaction gas directly into the plasma region through a modified hole of skimmer cone. We evaluated the use of an CRI ICP-MS system to minimize polyatomic interference of $^{52}Cr$ and $^{53}Cr$ in various foodstuffs. The $^{52}Cr$ concentrations measured in the standard mode were 2-3 times higher than the certified values. This analytical method based on an ICP-MS system equipped with a CRI of helium gas was effective for Cr analysis in complex food matrices.

Keywords

References

  1. Sahan, Y.; Basoglu, F.; Gucer, S. Food Chemistry 2007, 105, 395. https://doi.org/10.1016/j.foodchem.2006.12.026
  2. Koyanagi, K. G.; Baranov, I. V.; Tanner, D. S.; Boheme, K. D. J. Anal. At. Spectrom. 2000, 15, 1207. https://doi.org/10.1039/b000989j
  3. McCurdy, E.; Woods, G. J. Anal. At. Spectrom. 2004, 19, 607. https://doi.org/10.1039/b312250f
  4. Rodrigo, F. S. S.; Marcelo, B. B. G; Edenir, R. P.; Joaquim, A. N. Talanta 2011, 86, 241. https://doi.org/10.1016/j.talanta.2011.09.009
  5. Pick, D.; Leiterer, M.; Einax, W. J. Microchemical Journal 2010, 95, 315. https://doi.org/10.1016/j.microc.2010.01.008
  6. D'Ilio, S.; ViolanteAuthor Vitae, N.; MajoraniAuthor Vitae, C.; Petrucci, F. Analytica Chimica Acta 2011, 698, 6. https://doi.org/10.1016/j.aca.2011.04.052
  7. Public Health Service Agency for Toxic Substances and Disease Registry, Toxicological Profile for Chromium, 2012.
  8. Hammer, D.; Nicolas, M.; Andrey, D. Atomic Spectroscopy 2005, 26, 6.
  9. Reczajska, W.; Jedrzejczak, R.; Szteke, B. Pol. J. Food Nutr. Sci. 2005, 14/55, 183.
  10. Anderson, R. A. Sci. Total Environment 1981, 17, 13. https://doi.org/10.1016/0048-9697(81)90104-2
  11. WHO. Chromium in drinking water. Background document for development of WHO guidelines for drinking water quality. Geneva: World Health Organization. 2003.
  12. FDA. Nutrition labeling of food. U.S. Food and Drug Administration. Code of Federal Regulations. 2007.
  13. Korea Food and Drug Administration, Risk profile of Chromium, 2010.
  14. Mok, J. S.; Park, H. Y.; Kim, J. H. K. J. Korean Soc. Food Sci. Nutr. 2005, 34, 1464. https://doi.org/10.3746/jkfn.2005.34.9.1464
  15. Makishima, A.; Yamakawa, A.; Yamashita, K.; Nakamura, E. Chemical Geology 2010, 274, 82. https://doi.org/10.1016/j.chemgeo.2010.03.018
  16. Marcus, R. J. Anal. At. Spectrosc. 2004, 19, 591. https://doi.org/10.1039/b401681e
  17. Vincent, D.; Laurent, N.; Thierry, G. Analytica Chimica Acta 2006, 565, 214. https://doi.org/10.1016/j.aca.2006.02.046
  18. Wu, M.; Jiang, S.; Hsi, T. Anal. Bioanal. Chem. 2003, 377, 154. https://doi.org/10.1007/s00216-003-2067-y
  19. Silmara, R. B.; Renata, S. A.; Catarinie, D. P.; Rodrigo, F. S. S.; Joaquim, A. N.; Ana Rita, A. N. Anal. Lett. 2012, 45, 2845. https://doi.org/10.1080/00032719.2012.702176
  20. Fialho, L.; Pereira, C.; Nobrega, J. Spectrochim Acta B 2011, 66, 389. https://doi.org/10.1016/j.sab.2011.04.001

Cited by

  1. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages vol.30, pp.3, 2015, https://doi.org/10.1039/C5JA90001H
  2. Strategies to overcome spectral interference in ICP-MS detection vol.31, pp.5, 2016, https://doi.org/10.1039/C5JA00497G