DOI QR코드

DOI QR Code

Liquid Chromatography Quadrupole Time-Of-Flight Tandem Mass Spectrometry for Selective Determination of Usnic Acid and Application in Pharmacokinetic Study

  • Fang, Minfeng (Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University) ;
  • Wang, Hui (Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University) ;
  • Wu, Yang (Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University) ;
  • Wang, Qilin (Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University) ;
  • Zhao, Xinfeng (Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University) ;
  • Zheng, Xiaohui (Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University) ;
  • Wang, Shixiang (Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University) ;
  • Zhao, Guifang (Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University)
  • Received : 2013.01.28
  • Accepted : 2013.03.13
  • Published : 2013.06.20

Abstract

A rapid and sensitive method for determining usnic acid of Lethariella cladonioides in rat was established using high performance liquid chromatography (HPLC) quadrupole time-of-flight (QTOF) tandem mass (MS/MS). Rat plasma was pretreated by mixture of acetonitrile and chloroform to precipitate plasma proteins. Chromatographic separation was achieved on a column ($50{\times}2.1$ mm, $5{\mu}m$) with a mobile phase consisting of water (containing $5{\times}10^{-3}$ M ammonium formate, pH was adjusted to 3.0 with formic acid) and acetonitrile (20:80, v/v) at a flow rate of 0.3 mL/min. A tandem mass spectrometric detection with an electrospray ionization (ESI) interface was conducted via collision induced dissociation (CID) under negative ionization mode. The MS/MS transitions monitored were m/z 343.0448 ${\rightarrow}$ m/z 313.2017 for usnic acid and m/z 153.1024 ${\rightarrow}$ m/z 136.2136 for protocatechuic acid (internal standard). The linear range was calculated to be 2.0-160.0 ng/mL with a detection limit of 3.0 pg/mL. The inter- and intra-day accuracy and precision were within ${\pm}7.0%$. Pharmacokinetic study showed that the apartment of usnic acid in vivo confirmed to be a two compartment open model. The method was fully valid and will probably be an alternative for pharmacokinetic study of usnic acid.

Keywords

References

  1. Ingolfsdottir, K. Phytochemistry 2002, 61, 729. https://doi.org/10.1016/S0031-9422(02)00383-7
  2. Bjerke, J. W.; Elvebakk, A.; Domínguez, E.; Dahlback, A. Phytochemistry 2005, 66, 337. https://doi.org/10.1016/j.phytochem.2004.12.007
  3. Huneck, S. Naturwissensch. 1999, 86, 559. https://doi.org/10.1007/s001140050676
  4. Molnar, K.; Farkas, E. Z. Naturforschung C 2010, 65, 157.
  5. Mitrovic, T.; Stamenkovic, S.; Cvetkovic, V.; Tosi , S.; Stankovic, M.; Radojevic, I.; Stefanovic, O.; Comi , L.; Da i , D.; Cur i , M.; Markovic, S. Int. J. Mol. Sci. 2011, 12, 5428. https://doi.org/10.3390/ijms12085428
  6. Kosani , M. M.; Rankovic , B. R.; Stanojkovic , T. P. J. Sci. Food. Agr. 2012, 92, 1909. https://doi.org/10.1002/jsfa.5559
  7. Guo, L.; Shi, Q.; Fang, J. L.; Mei, N.; Ali, A. A.; Lewis, S. M.; Leakey, J. E.; Frankos, V. H. J. Environ. Sci. Health. C 2008, 26, 317. https://doi.org/10.1080/10590500802533392
  8. Behera, B. C.; Mahadik, N.; Morey, M. Pharm. Biol. 2012, 50, 968. https://doi.org/10.3109/13880209.2012.654396
  9. O'Neill, M. A.; Mayer, M.; Murray, K. E.; Rolim-Santos, H. M.; Santos-Magalhaes, N. S.; Thompson, A. M.; Appleyard, V. C. Braz. J. Biol. 2010, 70, 659. https://doi.org/10.1590/S1519-69842010005000013
  10. Einarsdottir, E.; Groeneweg, J.; Bjornsdottir, G. G.; Harethardottir, G.; Omarsdottir, S.; Ingolfsdottir, K.; Ogmundsdottir, H. M. Planta. Medica. 2010, 76, 969. https://doi.org/10.1055/s-0029-1240851
  11. Song, Y. J.; Dai, F. J.; Zhai, D.; Dong, Y. M.; Zhang, J.; Lu, B. B.; Luo, J.; Liu, M. Y.; Yi, Z. F. Angiogenesis 2012, 15, 421. https://doi.org/10.1007/s10456-012-9270-4
  12. Bhattarai, H. D.; Paudel, B.; Hong, S. G.; Lee, H. K.; Yim, J. H. J. Nat. Med. 2008, 62, 481. https://doi.org/10.1007/s11418-008-0257-9
  13. Gupta, V. K.; Darokar, M. P.; Shanker, K.; Negi, A. S.; Srivastava, S. K.; Gupta, M. M.; Khanuja, S. P. S. J. Liq. Chromatogr. R. T. 2007, 30, 97. https://doi.org/10.1080/10826070601034345
  14. Cansaran, D.; Atakol, O.; Halici, M. G.; Aksoy, A. Pharm. Biol. 2007, 45, 77. https://doi.org/10.1080/13880200601028503
  15. Ji, X.; Khan, I. A. J. AOAC. Int. 2005, 88, 1265.
  16. Falk, A.; Green, T. K.; Barboza, P. J. Chromatogr. A 2008, 1182, 141. https://doi.org/10.1016/j.chroma.2007.12.035
  17. Dailey, R.; Siemion, R.; Raisbeck, M.; Jesse, C. J. AOAC. Int. 2010, 93, 1137.
  18. Roach, J. A. G.; Musser, S. M.; Morehouse, K.; Woo J. Y. J. J. Agr. Food. Chem. 2006, 54, 2484. https://doi.org/10.1021/jf052767m
  19. Wei, A. H.; Zhou D. N.; Ruan, J. L.; Cai, Y. L.; Xiong, C. M.; Li, M. X. J. Sci. Food. Agr. 2012, 92, 373. https://doi.org/10.1002/jsfa.4601

Cited by

  1. Rapid identification of lichen compounds based on the structure–fragmentation relationship using ESI-MS/MS analysis vol.7, pp.15, 2015, https://doi.org/10.1039/C5AY01091H
  2. vol.8, pp.28, 2018, https://doi.org/10.1039/C8RA00081F